425
Views
33
CrossRef citations to date
0
Altmetric
Theme: Epilepsy - Review

mTOR inhibitors as a new therapeutic option for epilepsy

&
Pages 627-638 | Published online: 09 Jan 2014

References

  • Crino PB. mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 17(12), 734–742 (2011).
  • Crino PB. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found. Symp. 288, 260–272; discussion 272 (2007).
  • Ryther RC, Wong M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr. Neurol. Neurosci. Rep. 12(4), 410–418 (2012).
  • Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53(7), 1119–1130 (2012).
  • Russo E, Citraro R, Constanti A, De Sarro G. The mTOR signaling pathway in the brain: focus on epilepsy and epileptogenesis. Mol. Neurobiol. 46(3), 662–681 (2012).
  • Weichhart T. Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol. Biol. 821, 1–14 (2012).
  • Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim. Biophys. Acta 1784(1), 116–132 (2008).
  • Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8(12), 1727–1734 (2005).
  • Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid. Med. Cell. Longev. 3(6), 374–391 (2010).
  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33(2), 67–75 (2010).
  • Ehninger D, Silva AJ. Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol. Med. 17(2), 78–87 (2011).
  • Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol. 13(9), 478–483 (2003).
  • Puffenberger EG, Strauss KA, Ramsey KE et al. Polyhydramnios, megalencephaly and symptomatic epilepsy caused by a homozygous 7-kilobase deletion in LYK5. Brain 130(Pt 7), 1929–1941 (2007).
  • Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC–mTOR pathway in human disease. Nat. Genet. 37(1), 19–24 (2005).
  • Lee CH, Inoki K, Guan KL. mTOR pathway as a target in tissue hypertrophy. Annu. Rev. Pharmacol. Toxicol. 47, 443–467 (2007).
  • Lee JH, Huynh M, Silhavy JL et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nat. Genet. 44(8), 941–945 (2012).
  • Sarnat H, Flores-Sarnat L, Crino P, Hader W, Bello-Espinosa L. Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis. Folia Neuropathol. 50(4), 330–345 (2012).
  • Shirazi F, Cohen C, Fried L, Arbiser JL. Mammalian target of rapamycin (mTOR) is activated in cutaneous vascular malformations in vivo. Lymphat. Res. Biol. 5(4), 233–236 (2007).
  • Zhang B, Wong M. Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53(3), 506–511 (2012).
  • McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci. Lett. 497(3), 231–239 (2011).
  • Weston MC, Chen H, Swann JW. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J. Neurosci. 32(33), 11441–11452 (2012).
  • Hartman AL, Santos P, Dolce A, Hardwick JM. The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice. PLoS ONE 7(9), e45156 (2012).
  • Chachua T, Poon KL, Yum MS et al. Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats. Epilepsia 53(11), 2015–2025 (2012).
  • Raab-Graham KF, Haddick PC, Jan YN, Jan LY. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314(5796), 144–148 (2006).
  • Terashima A, Nakai M, Hashimoto T et al. Single-channel activity of the Ca2+-dependent K+ channel is modulated by FK506 and rapamycin. Brain Res. 786(1–2), 255–258 (1998).
  • Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci. Lett. 401(1–2), 35–39 (2006).
  • Galanopoulou AS, Buckmaster PS, Staley KJ et al.; American Epilepsy Society Basic Science Committee and The International League Against Epilepsy Working Group On Recommendations For Preclinical Epilepsy Drug Discovery. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53(3), 571–582 (2012).
  • Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29(25), 8259–8269 (2009).
  • Wong M. Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations. Exp. Neurol. doi:10.1111/j.1528-1167.2009.02341.x (2011) (Epub ahead of print).
  • Dello Russo C, Lisi L, Tringali G, Navarra P. Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem. Pharmacol. 78(9), 1242–1251 (2009).
  • van Vliet EA, Forte G, Holtman L et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 53(7), 1254–1263 (2012).
  • Wang SJ, Bo QY, Zhao XH, Yang X, Chi ZF, Liu XW. Resveratrol pre-treatment reduces early inflammatory responses induced by status epilepticus via mTOR signaling. Brain Res. 1492, 122–129 (2013).
  • McMahon J, Huang X, Yang J et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32(45), 15704–15714 (2012).
  • Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci. Lett. 509(2), 105–109 (2012).
  • Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol. Dis. 43(2), 322–329 (2011).
  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26(1), 86–93 (2007).
  • Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia–ischemia. Autophagy 6(3), 366–377 (2010).
  • Russo E, Citraro R, Donato G et al. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 69, 25–36 (2013).
  • Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29(21), 6964–6972 (2009).
  • Huang X, Zhang H, Yang J et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis. 40(1), 193–199 (2010).
  • Sunnen CN, Brewster AL, Lugo JN et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS–Pten conditional knockout mice. Epilepsia 52(11), 2065–2075 (2011).
  • Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 31(6), 2337–2347 (2011).
  • Park J, Zhang J, Qiu J et al. Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 32(2), 330–340 (2012).
  • Talos DM, Sun H, Jackson M, Joseph A, Fitzgerald E, Jensen FE. Rapamycin attenuates the increases in seizure susceptibility and neuronal excitability following neonatal seizures in rat. Epilepsy Curr. 11(Suppl. 1), Abstract A.08 (2011).
  • Sankar R, Auvin S, Kwon YS, Pineda E, Shin D, Mazarati A. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia 51 Suppl 3, 39–42 (2010).
  • Spreafico R, Blümcke I. Focal cortical dysplasias: clinical implication of neuropathological classification systems. Acta Neuropathol. 120(3), 359–367 (2010).
  • Lortie A, Plouin P, Chiron C, Delalande O, Dulac O. Characteristics of epilepsy in focal cortical dysplasia in infancy. Epilepsy Res. 51(1–2), 133–145 (2002).
  • Gumbinger C, Rohsbach CB, Schulze-Bonhage A et al. Focal cortical dysplasia: a genotype-phenotype analysis of polymorphisms and mutations in the TSC genes. Epilepsia 50(6), 1396–1408 (2009).
  • Lugnier C, Majores M, Fassunke J et al. Hamartin variants that are frequent in focal dysplasias and cortical tubers have reduced tuberin binding and aberrant subcellular distribution in vitro. J. Neuropathol. Exp. Neurol. 68(10), 1136–1146 (2009).
  • Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, D’Arcangelo G. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis. Model. Mech. 2(7–8), 389–398 (2009).
  • Chen J, Tsai V, Parker WE, Aronica E, Baybis M, Crino PB. Detection of human papillomavirus in human focal cortical dysplasia type IIB. Ann. Neurol. 72(6), 881–892 (2012).
  • Marsh DJ, Kum JB, Lunetta KL et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet. 8(8), 1461–1472 (1999).
  • Kwon CH, Zhu X, Zhang J, Baker SJ. mTOR is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl Acad. Sci. USA 100(22), 12923–12928 (2003).
  • Kwon CH, Zhu X, Zhang J et al. Pten regulates neuronal soma size: a mouse model of Lhermitte–Duclos disease. Nat. Genet. 29(4), 404–411 (2001).
  • Backman SA, Stambolic V, Suzuki A et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte–Duclos disease. Nat. Genet. 29(4), 396–403 (2001).
  • Zhou J, Blundell J, Ogawa S et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29(6), 1773–1783 (2009).
  • Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 372(9639), 657–668 (2008).
  • Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 14(2), 146–149 (2010).
  • Cusmai R, Moavero R, Bombardieri R, Vigevano F, Curatolo P. Long-term neurological outcome in children with early-onset epilepsy associated with tuberous sclerosis. Epilepsy Behav. 22(4), 735–739 (2011).
  • Zhang B, Mcdaniel SS, Rensing NR, Wong M. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS ONE 8(2), e57445 (2013).
  • Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3´-kinase–Akt–mammalian target of rapamycin pathway. J. Neurosci. 25(49), 11300–11312 (2005).
  • Curatolo P, Bombardieri R, Verdecchia M, Seri S. Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J. Child Neurol. 20(4), 318–325 (2005).
  • von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur. J. Neurosci. 23(3), 686–692 (2006).
  • Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63(4), 444–453 (2008).
  • Meikle L, Pollizzi K, Egnor A et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28(21), 5422–5432 (2008).
  • Magri L, Cambiaghi M, Cominelli M et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9(5), 447–462 (2011).
  • Goto J, Talos DM, Klein P et al. Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc. Natl Acad. Sci. USA 108(45), E1070–E1079 (2011).
  • Cambiaghi M, Cursi M, Magri L et al. Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology 67, 1–7 (2013).
  • Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev. 31(2), 104–113 (2009).
  • Ehninger D, Han S, Shilyansky C et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat. Med. 14(8), 843–848 (2008).
  • Talos DM, Sun H, Zhou X et al. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLoS ONE 7(5), e35885 (2012).
  • Prabowo AS, Anink JJ, Lammens M et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 23(1), 45–59 (2013).
  • Tsai V, Parker WE, Orlova KA et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb. Cortex doi:10.1093/cercor/bhs310 (2012) (Epub ahead of print).
  • Anderl S, Freeland M, Kwiatkowski DJ, Goto J. Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum. Mol. Genet. 20(23), 4597–4604 (2011).
  • Way SW, Rozas NS, Wu HC et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 21(14), 3226–3236 (2012).
  • Franz DN, Belousova E, Sparagana S et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled Phase 3 trial. Lancet 381(9861), 125–132 (2013).
  • Muncy J, Butler IJ, Koenig MK. Rapamycin reduces seizure frequency in tuberous sclerosis complex. J. Child Neurol. 24(4), 477 (2009).
  • Perek-Polnik M, Józwiak S, Jurkiewicz E, Perek D, Kotulska K. Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 16(1), 83–85 (2012).
  • Krueger DA, Care MM, Holland K et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363(19), 1801–1811 (2010).
  • Curatolo P, Moavero R. mTOR inhibitors in tuberous sclerosis complex. Curr. Neuropharmacol. 10(4), 404–415 (2012).
  • Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80(6), 574–580 (2013).
  • Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 10(11), 868–880 (2011).
  • Sato A, Kasai S, Kobayashi T et al. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat. Commun. 3, 1292 (2012).
  • Carson RP, Van Nielen DL, Winzenburger PA, Ess KC. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45(1), 369–380 (2012).
  • Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc. Natl Acad. Sci. USA 108(38), 15996–16001 (2011).
  • Orlova KA, Parker WE, Heuer GG et al. STRADα deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J. Clin. Invest. 120(5), 1591–1602 (2010).
  • Pilarski R, Stephens JA, Noss R, Fisher JL, Prior TW. Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome clinical features. J. Med. Genet. 48(8), 505–512 (2011).
  • Victor RG, Thomas GD, Marban E, O’Rourke B. Presynaptic modulation of cortical synaptic activity by calcineurin. Proc. Natl Acad. Sci. USA 92(14), 6269–6273 (1995).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.