192
Views
35
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s Disease - Review

Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson’s disease

Pages 707-718 | Published online: 09 Jan 2014

References

  • Finch CE, Tanzi RE. Genetics of aging. Science 278(5337), 407–411 (1997).
  • Rattan SI. The science of healthy aging: genes, milieu, and chance. Ann. N. Y. Acad. Sci. 1114, 1–10 (2007).
  • Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim. Biophys. Acta 1813(4), 623–633 (2011).
  • Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch. Toxicol. 84(11), 825–889 (2010).
  • Koutsilieri E, Scheller C, Grünblatt E, Nara K, Li J, Riederer P. Free radicals in Parkinson’s disease. J. Neurol. 249(Suppl. 2), II1–II5 (2002).
  • Mattson MP. Will caloric restriction and folate protect against AD and PD? Neurology 60(4), 690–695 (2003).
  • Przuntek H, Müller T, Riederer P. Diagnostic staging of Parkinson’s disease: conceptual aspects. J. Neural Transm. 111(2), 201–216 (2004).
  • Müller T. Motor complications, levodopa metabolism and progression of Parkinson’s disease. Expert Opin. Drug Metab. Toxicol. 7(7), 847–855 (2011).
  • Borah A, Mohanakumar KP. l-DOPA induced-endogenous 6-hydroxydopamine is the cause of aggravated dopaminergic neurodegeneration in Parkinson’s disease patients. Med. Hypotheses 79(2), 271–273 (2012).
  • LeWitt PA, Dubow J, Singer C. Is levodopa toxic? Insights from a brain bank. Neurology 77(15), 1414–1415 (2011).
  • Parkkinen L, O’Sullivan SS, Kuoppamäki M et al. Does levodopa accelerate the pathologic process in Parkinson disease brain? Neurology 77(15), 1420–1426 (2011).
  • Fahn S, Oakes D, Shoulson I et al.; Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351(24), 2498–2508 (2004).
  • Murer MG, Dziewczapolski G, Menalled LB et al. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann. Neurol. 43(5), 561–575 (1998).
  • Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed. Pharmacother. 62(4), 236–249 (2008).
  • Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov. Disord. 21(9), 1299–1310 (2006).
  • Berg D, Hochstrasser H, Schweitzer KJ, Riess O. Disturbance of iron metabolism in Parkinson’s disease – ultrasonography as a biomarker. Neurotox. Res. 9(1), 1–13 (2006).
  • Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353(9157), 981–982 (1999).
  • Tanner CM, Ross GW, Jewell SA et al. Occupation and risk of parkinsonism: a multicenter case-control study. Arch. Neurol. 66(9), 1106–1113 (2009).
  • Sabens EA, Distler AM, Mieyal JJ. Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson’s disease. Biochemistry 49(12), 2715–2724 (2010).
  • Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol. Pharmacol. 77(4), 621–632 (2010).
  • Williams AC, Cartwright LS, Ramsden DB. Parkinson’s disease: the first common neurological disease due to auto-intoxication? QJM 98(3), 215–226 (2005).
  • Costa C, Belcastro V, Tozzi A et al. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28(32), 8040–8052 (2008).
  • Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem. 80(1), 101–110 (2002).
  • Gorgone G, Currò M, Ferlazzo N et al. Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. Neuromolecular Med. 14(1), 84–90 (2012).
  • Müller T. Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev. Neurother. 8(6), 957–967 (2008).
  • Cacciapuoti F. Hyper-homocysteinemia: a novel risk factor or a powerful marker for cardiovascular diseases? Pathogenetic and therapeutical uncertainties. J. Thromb. Thrombolysis 32(1), 82–88 (2011).
  • Müller T, Muhlack S. Cysteine decrease following acute Levodopa intake in patients with Parkinson’s disease. Neurosci. Lett. 521(1), 37–39 (2012).
  • Müller T, Kuhn W. Cysteine elevation in levodopa-treated patients with Parkinson’s disease. Mov. Disord. 24(6), 929–932 (2009).
  • Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 33(Pt 6), 1375–1377 (2005).
  • Müller T, Muhlack S. Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Mov. Disord. 26(3), 543–546 (2011).
  • Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr. Med. Chem. 11(15), 2033–2043 (2004).
  • Burke WJ, Kumar VB, Pandey N et al. Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol. 115(2), 193–203 (2008).
  • Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE. The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE 5(12), e15251 (2010).
  • Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci. Lett. 469(1), 159–163 (2010).
  • Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr. Med. Chem. 18(26), 4053–4064 (2011).
  • Somayajulu-Nitu M, Sandhu JK, Cohen J et al. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci. 10, 88 (2009).
  • Müller T, Jugel C, Ehret R et al. Elevation of total homocysteine levels in patients with Parkinson’s disease treated with duodenal levodopa/carbidopa gel. J. Neural Transm. 118(9), 1329–1333 (2011).
  • Lee ES, Chen H, Soliman KF, Charlton CG. Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology 26(3), 361–371 (2005).
  • Manca D, Cossu G, Murgia D et al. Reversible encephalopathy and axonal neuropathy in Parkinson’s disease during duodopa therapy. Mov. Disord. 24(15), 2293–2294 (2009).
  • Müller T, Renger K, Kuhn W. Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch. Neurol. 61(5), 657–660 (2004).
  • Toth C, Breithaupt K, Ge S et al. Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann. Neurol. 68(1), 28–36 (2010).
  • Ben-Shlomo Y, Marmot MG. Survival and cause of death in a cohort of patients with parkinsonism: possible clues to aetiology? J. Neurol. Neurosurg. Psychiatr. 58(3), 293–299 (1995).
  • Gorell JM, Johnson CC, Rybicki BA. Parkinson’s disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology 44(10), 1865–1868 (1994).
  • Chen L, Ding Y, Cagniard B et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J. Neurosci. 28(2), 425–433 (2008).
  • Lee ES, Chen H, King J, Charlton C. The role of 3-O-methyldopa in the side effects of l-dopa. Neurochem. Res. 33(3), 401–411 (2008).
  • Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp. Neurol. 188(2), 491–494 (2004).
  • Shults CW, Haas R. Clinical trials of coenzyme Q10 in neurological disorders. Biofactors 25(1–4), 117–126 (2005).
  • Snow BJ, Rolfe FL, Lockhart MM et al.; Protect Study Group. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25(11), 1670–1674 (2010).
  • Storch A, Jost WH, Vieregge P et al.; German Coenzyme Q(10) Study Group. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch. Neurol. 64(7), 938–944 (2007).
  • Muller T. The impact of COMT-inhibition on gastrointestinal levodopa absorption in patients with Parkinson’s disease. Clin. Med. Insights Therapeut. 2, 155–168 (2010).
  • Müller T, Lang UE, Muhlack S, Welnic J, Hellweg R. Impact of levodopa on reduced nerve growth factor levels in patients with Parkinson disease. Clin. Neuropharmacol. 28(5), 238–240 (2005).
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 63(1), 71–124 (2001).
  • Whone AL, Watts RL, Stoessl AJ et al.; REAL-PET Study Group. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann. Neurol. 54(1), 93–101 (2003).
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287(13), 1653–1661 (2002).
  • Oertel WH, Wolters E, Sampaio C et al. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET study. Mov. Disord. 21(3), 343–353 (2006).
  • Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease. J. Physiol. Biochem. 68(1), 59–69 (2012).
  • Shapira A, Albrecht S, Barone P et al. Immediate vs. delayed-start pramipexole in early Parkinson’s disease: the PROUD study. Parkinsonism Relat. Disord. 15(Suppl. 2), S81 (2009).
  • Müller T, Erdmann C, Bremen D et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin. Neuropharmacol. 29(2), 61–67 (2006).
  • Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ; TEMPO Open-label Study Group. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov. Disord. 24(4), 564–573 (2009).
  • Lew MF, Hauser RA, Hurtig HI et al. Long-term efficacy of rasagiline in early Parkinson’s disease. Int. J. Neurosci. 120(6), 404–408 (2010).
  • Fabbrini G, Abbruzzese G, Marconi S, Zappia M. Selegiline: a reappraisal of its role in Parkinson disease. Clin. Neuropharmacol. 35(3), 134–140 (2012).
  • Giladi N, McDermott MP, Fahn S et al.; Parkinson Study Group. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56(12), 1712–1721 (2001).
  • LeWitt P, Oakes D, Cui L. The need for levodopa as an end point of Parkinson’s disease progression in a clinical trial of selegiline and alpha-tocopherol. Parkinson Study Group. Mov. Disord. 12(2), 183–189 (1997).
  • Marras C, McDermott MP, Rochon PA et al.; Parkinson Study Group. Survival in Parkinson disease: thirteen-year follow-up of the DATATOP cohort. Neurology 64(1), 87–93 (2005).
  • Hauser RA, Koller WC, Hubble JP, Malapira T, Busenbark K, Olanow CW. Time course of loss of clinical benefit following withdrawal of levodopa/carbidopa and bromocriptine in early Parkinson’ s disease. Mov. Disord. 15(3), 485–489 (2000).
  • Olanow CW, Hauser RA, Gauger L et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann. Neurol. 38(5), 771–777 (1995).
  • Pålhagen S, Heinonen EH, Hägglund J et al. Selegiline delays the onset of disability in de novo Parkinsonian patients. Swedish Parkinson Study Group. Neurology 51(2), 520–525 (1998).
  • Pålhagen S, Heinonen E, Hägglund J, Kaugesaar T, Mäki-Ikola O, Palm R; Swedish Parkinson Study Group. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 66(8), 1200–1206 (2006).
  • Larsen JP, Boas J, Erdal JE. Does selegiline modify the progression of early Parkinson’s disease? Results from a five-year study. The Norwegian–Danish Study Group. Eur. J. Neurol. 6(5), 539–547 (1999).
  • Przuntek H, Conrad B, Dichgans J et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur. J. Neurol. 6(2), 141–150 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.