463
Views
31
CrossRef citations to date
0
Altmetric
Drug Profile

Ginsenoside Rd for acute ischemic stroke: translating from bench to bedside

, &
Pages 603-613 | Published online: 09 Jan 2014

References

  • Roger VL, Go AS, Lloyd-Jones DM et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125(1), e2–e220 (2012).
  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 8(4), 355–369 (2009).
  • Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3), 363–389 (2008).
  • Fisher M. New approaches to neuroprotective drug development. Stroke 42(1 Suppl.), S24–S27 (2011).
  • Ginsberg MD. Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40(3 Suppl.), S111–S114 (2009).
  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59(3), 467–477 (2006).
  • Tymianski M. Can molecular and cellular neuroprotection be translated into therapies for patients?: Yes, but not the way we tried it before. Stroke 41(10 Suppl.), S87–S90 (2010).
  • Philip M, Benatar M, Fisher M, Savitz SI. Methodological quality of animal studies of neuroprotective agents currently in Phase II/III acute ischemic stroke trials. Stroke 40(2), 577–581 (2009).
  • Ginsberg MD. Life after cerovive: a personal perspective on ischemic neuroprotection in the post-NXY-059 era. Stroke 38(6), 1967–1972 (2007).
  • Broussalis E, Trinka E, Killer M, Harrer A, McCoy M, Kraus J. Current therapies in ischemic stroke. Part B. Future candidates in stroke therapy and experimental studies. Drug Discov. Today 17(13–14), 671–684 (2012).
  • Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55, 1–99 (2009).
  • Jia L, Zhao Y. Current evaluation of the millennium phytomedicine – ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 16(19), 2475–2484 (2009).
  • Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat. Prod. Rep. 28(3), 467–495 (2011).
  • Ma YC, Zhu J, Luo L. A comparative evaluation of ginsenosides in commercial ginseng products and tissue culture samples using HPLC. J. Herb. Species Med. Plants 3(4), 41–50 (1996).
  • Liu D, Zeng X. A procedure to rapidly isolate ginsenoside Rd from Panax notoginseng. J. Chin. Med. Mater. 29(3), 247–249 (2006).
  • Yang Z, Chen A, Sun H, Ye Y, Fang W. Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 25(1), 161–169 (2007).
  • Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25(6), 743–747 (2002).
  • Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 13(4), 381–404 (2007).
  • Jung IH, Lee JH, Hyun YJ, Kim DH. Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing β-d-glucosidase from Bifidobacterium longum H-1. Biol. Pharm. Bull. 35(4), 573–581 (2012).
  • Li J, Xie ZZ, Tang YB, Zhou JG, Guan YY. Ginsenoside-Rd, a purified component from Panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur. J. Pharmacol. 652(1–3), 104–110 (2011).
  • Cai BX, Li XY, Chen JH et al. Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur. J. Pharmacol. 606(1–3), 142–149 (2009).
  • Yang ZG, Sun HX, Ye YP. Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem. Biodivers. 3(2), 187–197 (2006).
  • Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J. Pharm. Pharmacol. 56(1), 107–113 (2004).
  • Guan YY, Zhou JG, Zhang Z et al. Ginsenoside-Rd from Panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur. J. Pharmacol. 548(1–3), 129–136 (2006).
  • Zhang C, Ye R, Han J et al. The effect of ginsenoside Rd on the intracellular free calcium after excitotoxic injury in cultured cortical neurons. Chin. J. Neuroanat. 26(2), 112–118 (2010).
  • Zhang C, Du F, Shi M et al. Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting Ca(2+) influx. Cell. Mol. Neurobiol. 32(1), 121–128 (2012).
  • Ye R, Han J, Kong X et al. Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. Biol. Pharm. Bull. 31(10), 1923–1927 (2008).
  • Ye R, Li N, Han J et al. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci. Res. 64(3), 306–310 (2009).
  • Yang L, Deng Y, Xu S, Zeng X. In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 854(1–2), 77–84 (2007).
  • Yang L, Xu SJ, Zeng X et al. [Determination of ginsenoside Rd and its metabolites in rat urine by LC-MS]. Yao Xue Xue Bao 41(8), 742–746 (2006).
  • Sun D, Wang B, Shi M et al. Pharmacokinetic, tissue distribution and excretion of ginsenoside-Rd in rodents. Phytomedicine 19(3–4), 369–373 (2012).
  • Ye R, Kong X, Yang Q et al. Ginsenoside Rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window. Neurotherapeutics 8(3), 515–525 (2011).
  • Wang W, Wang GJ, Xie HT et al. Determination of ginsenoside Rd in dog plasma by liquid chromatography–mass spectrometry after solid-phase extraction and its application in dog pharmacokinetics studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1–2), 8–14 (2007).
  • Deng YH, Feng Y, Zeng X et al. [Determination of ginsenoside rd in human plasma by LC/MS/MS]. Zhong Yao Cai 29(9), 928–931 (2006).
  • Zeng X, Deng Y, Feng Y et al. Pharmacokinetics and safety of ginsenoside Rd following a single or multiple intravenous dose in healthy Chinese volunteers. J. Clin. Pharmacol. 50(3), 285–292 (2010).
  • Zhang C, Du F, Shi M et al. Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting Ca(2+) influx. Cell. Mol. Neurobiol. 32(1), 121–128 (2012).
  • Li XY, Liang J, Tang YB, Zhou JG, Guan YY. Ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons. Clin. Exp. Pharmacol. Physiol. 37(2), 199–204 (2010).
  • Lu Y, Peng N, Lu ZH, Sang HF, Yang QZ, Xiong LZ. Neuroprotective effect of ginsenoside Rd predose on brain in rats. Chin. J. Neurosurg. Dis. Res. 8(6), 496–499 (2009).
  • Yuan LB, Dong HL, Zhang HP, Qu Y, Xiong LZ. Neuroprotective effect of ginsenoside Rd and its combined drug treatment. Chin. J. Neurosurg. Dis. Res. 9(3), 254–257 (2010).
  • Du XH, Yang JS, Shi XQ, Yan JQ. Effect of ginsenoside Rd pretreatment on the expressions of NR2B receptor and endonuclease G after focal cerebral ischemia–reperfusion in rats. Int. J. Cerebrovasc. Dis. 16(8), 571–575 (2008).
  • Ye R, Kong X, Yang Q, Zhang Y, Han J, Zhao G. Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 61(4), 815–824 (2011).
  • Ye R, Yang Q, Kong X et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem. Int. 58(3), 391–398 (2011).
  • Ye R, Zhang X, Kong X et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 178, 169–180 (2011).
  • Li N, Kong X, Ye R, Yang Q, Han J, Xiong L. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage. Rejuvenation Res. 14(3), 261–273 (2011).
  • Lipton P. Ischemic cell death in brain neurons. Physiol. Rev. 79(4), 1431–1568 (1999).
  • Guan YY, He H, Chen JX. [Effect of the total saponins of Panax notogiseng on contraction of rabbit aortic strips]. Zhongguo Yao Li Xue Bao 6(4), 267–269 (1985).
  • Guan YY, Kwan CY, He H, Sun JJ, Daniel EE. Effects of Panax notoginseng saponins on receptor-operated Ca2+ channels in vascular smooth muscle. Zhongguo Yao Li Xue Bao 15(5), 392–398 (1994).
  • Rhim H, Kim H, Lee DY, Oh TH, Nah SY. Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate Ca2+ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436(3), 151–158 (2002).
  • Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits Ca2+ channels through a pertussis toxin-sensitive G protein. Proc. Natl Acad. Sci. USA 92(19), 8739–8743 (1995).
  • Kim HS, Lee JH, Goo YS, Nah SY. Effects of ginsenosides on Ca2+ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res. Bull. 46(3), 245–251 (1998).
  • Lee JH, Jeong SM, Kim JH et al. Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes. Mol. Cells 21(1), 52–62 (2006).
  • Liu ZQ, Luo XY, Liu GZ, Chen YP, Wang ZC, Sun YX. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J. Agric. Food Chem. 51(9), 2555–2558 (2003).
  • Yokozawa T, Owada S. Effect of ginsenoside-Rd in cephaloridine-induced renal disorder. Nephron 81(2), 200–207 (1999).
  • Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemia–reperfusion model. Nephron 78(2), 201–206 (1998).
  • López MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME. Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim. Biophys. Acta 1770(9), 1308–1316 (2007).
  • Jeong HG, Pokharel YR, Han EH, Kang KW. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein. Biochem. Biophys. Res. Commun. 359(1), 51–56 (2007).
  • Choi SS, Lee JK, Han EJ et al. Effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-α in C6 rat glioma cells. Arch. Pharm. Res. 26(5), 375–382 (2003).
  • Wu CF, Bi XL, Yang JY et al. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int. Immunopharmacol. 7(3), 313–320 (2007).
  • Lin WM, Zhang YM, Moldzio R, Rausch WD. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J. Neural Transm. Suppl. 72, 105–112 (2007).
  • Yang XL, Guo TK, Wang YH et al. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. Int. Immunopharmacol. 12(2), 408–414 (2012).
  • Wang L, Zhang Y, Wang Z et al. Inhibitory effect of ginsenoside-Rd on carrageenan-induced inflammation in rats. Can. J. Physiol. Pharmacol. 90(2), 229–236 (2012).
  • Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin. Med. 5, 20 (2010).
  • Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RN. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br. J. Pharmacol. 156(4), 626–637 (2009).
  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8(9), 963–970 (2002).
  • Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA. Neuronal nitric oxide synthase and ischemia-induced neurogenesis. J. Cereb. Blood Flow Metab. 25(4), 485–492 (2005).
  • Lin T, Liu Y, Shi M et al. Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J. Ethnopharmacol. 142(3), 754–761 (2012).
  • Wang B, Feng G, Tang C et al. Ginsenoside Rd maintains adult neural stem cell proliferation during lead-impaired neurogenesis. Neurol. Sci. doi:10.1016/j.expneurol.2012.09.012 (2012) (Epub ahead of print).
  • Liu J, Lin T, Yan X et al. Effects of infrasound on cell proliferation in the dentate gyrus of adult rats. Neuroreport 21(8), 585–589 (2010).
  • Liu J, Yan X, Li L et al. Ginsennoside rd attenuates cognitive dysfunction in a rat model of Alzheimer’s disease. Neurochem. Res. 37(12), 2738–2747 (2012).
  • Li L, Liu Z, Liu J et al. Ginsenoside Rd attenuates β-amyloid-induced τ phosphorylation by altering the functional balance of glycogen synthase kinase 3β and protein phosphatase 2A. Neurobiol. Dis. doi:10.1016/j.nbd.2013.01.002 (2013) (Epub ahead of print).
  • Liu X, Xia J, Wang L et al. Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, Phase II multicenter trial. Eur. J. Neurol. 16(5), 569–575 (2009).
  • Liu X, Wang L, Wen A et al. Ginsenoside-Rd improves outcome of acute ischaemic stroke – a randomized, double-blind, placebo-controlled, multicenter trial. Eur. J. Neurol. 19(6), 855–863 (2012).
  • Chavez JC, Hurko O, Barone FC, Feuerstein GZ. Pharmacologic interventions for stroke: looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke 40(10), e558–e563 (2009).
  • Ye R, Yang Q, Kong X et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit. Care Med. 40(9), 2685–2693 (2012).
  • Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: the pharmaceutical industry perspective. Stroke 40(3 Suppl.), S121–S125 (2009).
  • Xue D, Slivka A, Buchan AM. Tirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23(6), 894–899 (1992).
  • Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke 35(2), 578–583 (2004).
  • Minnerup J, Schäbitz WR. Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics 6(1), 43–52 (2009).
  • Kaste M. Is there a future for neuroprotective agents in acute ischaemic stroke? Eur. J. Neurol. 19(6), 797–798 (2012).
  • Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci. 8(10), 803–808 (2007).
  • Kaste M, Fogelholm R, Erilä T et al. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. Stroke 25(7), 1348–1353 (1994).
  • Trust Study Group. Randomised, double-blind, placebo-controlled trial of nimodipine in acute stroke. Lancet 336(8725), 1205–1209 (1990).
  • Shuaib A, Lees KR, Lyden P et al.; SAINT II Trial Investigators. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med. 357(6), 562–571 (2007).
  • Feuerstein GZ, Zaleska MM, Krams M et al. Missing steps in the STAIR case: a Translational Medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J. Cereb. Blood Flow Metab. 28(1), 217–219 (2008).
  • Savitz SI. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp. Neurol. 205(1), 20–25 (2007).
  • STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30(12), 2752–2758 (1999).
  • Fisher M, Feuerstein G, Howells DW et al.; STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6), 2244–2250 (2009).
  • Minnerup J, Wersching H, Diederich K et al. Methodological quality of preclinical stroke studies is not required for publication in high-impact journals. J. Cereb. Blood Flow Metab. 30(9), 1619–1624 (2010).
  • Amemiya S, Kamiya T, Nito C et al. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur. J. Pharmacol. 516(2), 125–130 (2005).
  • Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36(10), 2220–2225 (2005).
  • Nishi H, Watanabe T, Sakurai H, Yuki S, Ishibashi A. Effect of MCI-186 on brain edema in rats. Stroke 20(9), 1236–1240 (1989).
  • Kawai H, Nakai H, Suga M, Yuki S, Watanabe T, Saito KI. Effects of a novel free radical scavenger, MCl-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J. Pharmacol. Exp. Ther. 281(2), 921–927 (1997).
  • Mizuno A, Umemura K, Nakashima M. Inhibitory effect of MCI-186, a free radical scavenger, on cerebral ischemia following rat middle cerebral artery occlusion. Gen. Pharmacol. 30(4), 575–578 (1998).
  • Wu TW, Zeng LH, Wu J, Fung KP. MCI-186: further histochemical and biochemical evidence of neuroprotection. Life Sci. 67(19), 2387–2392 (2000).
  • Takamatsu H, Kondo K, Ikeda Y, Umemura K. Neuroprotective effects depend on the model of focal ischemia following middle cerebral artery occlusion. Eur. J. Pharmacol. 362(2–3), 137–142 (1998).
  • Shichinohe H, Kuroda S, Yasuda H et al. Neuroprotective effects of the free radical scavenger edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res. 1029(2), 200–206 (2004).
  • Watanabe T, Yuki S, Egawa M, Nishi H. Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J. Pharmacol. Exp. Ther. 268(3), 1597–1604 (1994).
  • Srinivasan K, Sharma SS. Edaravone offers neuroprotection in a diabetic stroke model via inhibition of endoplasmic reticulum stress. Basic Clin. Pharmacol. Toxicol. doi:10.1111/j.1742-7843.2011.00763.x (2011) (Epub ahead of print).
  • Nakashima M, Niwa M, Iwai T, Uematsu T. Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic. Biol. Med. 26(5–6), 722–729 (1999).
  • Watanabe T, Tahara M, Todo S. The novel antioxidant edaravone: from bench to bedside. Cardiovasc. Ther. 26(2), 101–114 (2008).
  • Sun HS, Doucette TA, Liu Y et al. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39(9), 2544–2553 (2008).
  • Bråtane BT, Cui H, Cook DJ, Bouley J, Tymianski M, Fisher M. Neuroprotection by freezing ischemic penumbra evolution without cerebral blood flow augmentation with a postsynaptic density-95 protein inhibitor. Stroke 42(11), 3265–3270 (2011).
  • Aarts M, Liu Y, Liu L et al. Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science 298(5594), 846–850 (2002).
  • Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483(7388), 213–217 (2012).
  • Kaste M. Is the door open again for neuroprotection trials in stroke? Lancet Neurol. 11(11), 930–931 (2012).
  • Hill MD, Martin RH, Palesch YY et al.; ALIAS Investigators; Neurological Emergencies Treatment Trials Network. The Albumin in Acute Stroke Part 1 Trial: an exploratory efficacy analysis. Stroke 42(6), 1621–1625 (2011).
  • Hacke W, Kaste M, Bluhmki E et al.; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359(13), 1317–1329 (2008).
  • Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 15(3), 222–229 (2003).
  • Dávalos A, Alvarez-Sabín J, Castillo J et al.; International Citicoline Trial on Acute Stroke (ICTUS) trial investigators. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 380(9839), 349–357 (2012).
  • Cook DJ, Tymianski M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics 9(2), 371–379 (2012).
  • Dolgin E. To serve and neuroprotect. Nat. Med. 18(7), 1003–1006 (2012).
  • Sanossian N, Starkman S, Eckstein M et al.; FAST-MAG Trial Investigators. Intercontinental elicitation of informed consent for enrollment in stroke research. Cerebrovasc. Dis. 30(3), 323–324 (2010).
  • Liu R, Yuan H, Yuan F, Yang SH. Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol. Res. 34(4), 331–337 (2012).
  • Yu GL, Wei EQ, Zhang SH et al. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose- and time-dependently protects against focal cerebral ischemia in mice. Pharmacology 73(1), 31–40 (2005).
  • Takizawa S, Izuhara Y, Kitao Y et al. A novel inhibitor of advanced glycation and endoplasmic reticulum stress reduces infarct volume in rat focal cerebral ischemia. Brain Res. 1183, 124–137 (2007).
  • Nakajima H, Kakui N, Ohkuma K, Ishikawa M, Hasegawa T. A newly synthesized poly(ADP-ribose) polymerase inhibitor, DR2313 [2-methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]: pharmacological profiles, neuroprotective effects, and therapeutic time window in cerebral ischemia in rats. J. Pharmacol. Exp. Ther. 312(2), 472–481 (2005).
  • Satoh S, Toshima Y, Ikegaki I, Iwasaki M, Asano T. Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils. Brain Res. 1128(1), 175–180 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.