269
Views
8
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s Disease - Review

Gene therapy for Parkinson’s disease: state-of-the-art treatments for neurodegenerative disease

Pages 695-705 | Published online: 09 Jan 2014

References

  • Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP. Epidemiology of Parkinson’s disease. J. Neurol. 255(Suppl. 5), 18–32 (2008).
  • Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann. NY Acad. Sci. 991, 1–14 (2003).
  • Chaudhuri KR, Healy DG, Schapira AH; National Institute for Clinical Excellence. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 5(3), 235–245 (2006).
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature 388(6645), 839–840 (1997).
  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA 95(11), 6469–6473 (1998).
  • Olanow CW, Perl DP, DeMartino GN, McNaught KS. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol. 3(8), 496–503 (2004).
  • Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol. Neurobiol. 47(2), 495–508 (2013).
  • Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20), 1916–1925 (2008).
  • Daniel SE, Hawkes CH. Preliminary diagnosis of Parkinson’s disease by olfactory bulb pathology. Lancet 340(8812), 186 (1992).
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24(2), 197–211 (2003).
  • Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396(1), 67–72 (2006).
  • Kieburtz K, Wunderle KB. Parkinson’s disease: evidence for environmental risk factors. Mov. Disord. 28(1), 8–13 (2013).
  • Polymeropoulos MH, Higgins JJ, Golbe LI et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290), 1197–1199 (1996).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321), 2045–2047 (1997).
  • Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2(1), a008888 (2012).
  • Douglas MR, Lewthwaite AJ, Nicholl DJ. Genetics of Parkinson’s disease and parkinsonism. Expert Rev. Neurother. 7(6), 657–666 (2007).
  • Brice A. Genetics of Parkinson’s disease: LRRK2 on the rise. Brain 128(Pt 12), 2760–2762 (2005).
  • Lesage S, Dürr A, Tazir M et al.; French Parkinson’s Disease Genetics Study Group. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N. Engl. J. Med. 354(4), 422–423 (2006).
  • Ozelius LJ, Senthil G, Saunders-Pullman R et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 354(4), 424–425 (2006).
  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21(3), 1033–1038 (2001).
  • Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann. NY Acad. Sci. 991, 199–213 (2003).
  • Fahn S. Levodopa in the treatment of Parkinson’s disease. J. Neural Transm. Suppl. 71, 1–15 (2006).
  • Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284(15), 1931–1938 (2000).
  • Follett KA, Torres-Russotto D. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: which target? Parkinsonism Relat. Disord. 18(Suppl. 1), S165–S167 (2012).
  • Spieles-Engemann AL, Steece-Collier K, Behbehani MM et al. Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J. Parkinsons. Dis. 1(1), 123–136 (2011).
  • Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB. Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17(10), 729–762 (2003).
  • Santos CM. New agents promote neuroprotection in Parkinson’s disease models. CNS Neurol. Disord. Drug Targets 11(4), 410–418 (2012).
  • Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 164(4), 1357–1391 (2011).
  • Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med. 10, 1 (2012).
  • Kastin AJ, Akerstrom V, Pan W. Glial cell line-derived neurotrophic factor does not enter normal mouse brain. Neurosci. Lett. 340(3), 239–241 (2003).
  • Huang R, Han L, Li J et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J. Gene Med. 11(9), 754–763 (2009).
  • Alvarez-Maya I, Navarro-Quiroga I, Meraz-Ríos MA, Aceves J, Martinez-Fong D. In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor. Mol. Med. 7(3), 186–192 (2001).
  • Gonzalez-Barrios JA, Lindahl M, Bannon MJ et al. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol. Ther. 14(6), 857–865 (2006).
  • Hernandez-Baltazar D, Martinez-Fong D, Trudeau LE. Optimizing NTS–polyplex as a tool for gene transfer to cultured dopamine neurons. PLoS ONE 7(12), e51341 (2012).
  • Martinez-Fong D, Bannon MJ, Trudeau LE et al. NTS–Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine 8(7), 1052–1069 (2012).
  • Pardridge WM. Gene targeting in vivo with pegylated immunoliposomes. Meth. Enzymol. 373, 507–528 (2003).
  • Xia CF, Boado RJ, Zhang Y, Chu C, Pardridge WM. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. J. Gene Med. 10(3), 306–315 (2008).
  • Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48(2), 179–188 (2012).
  • Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. J. Physiol. Paris 106(1–2), 2–11 (2012).
  • Denyer R, Douglas MR. Gene therapy for Parkinson’s disease. Parkinsons. Dis. 2012, 757305 (2012).
  • Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson’s disease: properties and clinical grade production. Exp. Neurol. 209(1), 58–71 (2008).
  • Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45(2), 555–564 (1983).
  • Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J. Virol. 40(1), 241–247 (1981).
  • Drittanti L, Jenny C, Poulard K et al. Optimised helper virus-free production of high-quality adeno-associated virus vectors. J. Gene Med. 3(1), 59–71 (2001).
  • Gao G, Vandenberghe LH, Alvira MR et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78(12), 6381–6388 (2004).
  • Xie Q, Bu W, Bhatia S et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99(16), 10405–10410 (2002).
  • Nam HJ, Lane MD, Padron E et al. Structure of adeno-associated virus serotype 8, a gene therapy vector. J. Virol. 81(22), 12260–12271 (2007).
  • Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr. Gene Ther. 5(3), 299–310 (2005).
  • Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm. Res. 25(3), 489–499 (2008).
  • Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA 99(18), 11854–11859 (2002).
  • Dodiya HB, Bjorklund T, Stansell J 3rd, Mandel RJ, Kirik D, Kordower JH. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol. Ther. 18(3), 579–587 (2010).
  • Xue YQ, Ma BF, Zhao LR et al. AAV9-mediated erythropoietin gene delivery into the brain protects nigral dopaminergic neurons in a rat model of Parkinson’s disease. Gene Ther. 17(1), 83–94 (2010).
  • Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J. Virol. 77(6), 3495–3504 (2003).
  • Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).
  • Lo WD, Qu G, Sferra TJ, Clark R, Chen R, Johnson PR. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum. Gene Ther. 10(2), 201–213 (1999).
  • Fitzsimons HL, Riban V, Bland RJ, Wendelken JL, Sapan CV, During MJ. Biodistribution and safety assessment of AAV2-GAD following intrasubthalamic injection in the rat. J. Gene Med. 12(4), 385–398 (2010).
  • Monahan PE, Jooss K, Sands MS. Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin. Drug Saf. 1(1), 79–91 (2002).
  • Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr. Gene Ther. 3(6), 545–565 (2003).
  • Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63(9), 3822–3828 (1989).
  • Vigna E, Naldini L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2(5), 308–316 (2000).
  • Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu. Rev. Biochem. 74, 711–738 (2005).
  • Naldini L, Blömer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259), 263–267 (1996).
  • Hioki H, Kameda H, Nakamura H et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther. 14(11), 872–882 (2007).
  • Jakobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Mol. Ther. 13(3), 484–493 (2006).
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7(1), 33–40 (2001).
  • Nightingale SJ, Hollis RP, Pepper KA et al. Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13(6), 1121–1132 (2006).
  • Yáñez-Muñoz RJ, Balaggan KS, MacNeil A et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12(3), 348–353 (2006).
  • Wanisch K, Yáñez-Muñoz RJ. Integration-deficient lentiviral vectors: a slow coming of age. Mol. Ther. 17(8), 1316–1332 (2009).
  • Lombardo A, Genovese P, Beausejour CM et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25(11), 1298–1306 (2007).
  • Moldt B, Staunstrup NH, Jakobsen M, Yáñez-Muñoz RJ, Mikkelsen JG. Genomic insertion of lentiviral DNA circles directed by the yeast Flp recombinase. BMC Biotechnol. 8, 60 (2008).
  • Wong SP, Argyros O, Coutelle C, Harbottle RP. Strategies for the episomal modification of cells. Curr. Opin. Mol. Ther. 11(4), 433–441 (2009).
  • Wong SP, Argyros O, Coutelle C, Harbottle RP. Non-viral S/MAR vectors replicate episomally in vivo when provided with a selective advantage. Gene Ther. 18(1), 82–87 (2011).
  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15(9), 871–875 (1997).
  • Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors. Curr. Gene Ther. 7(5), 306–315 (2007).
  • Zhao J, Lever AM. Lentivirus-mediated gene expression. Methods Mol. Biol. 366, 343–355 (2007).
  • Strömberg I, Herrera-Marschitz M, Ungerstedt U, Ebendal T, Olson L. Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Exp. Brain Res. 60(2), 335–349 (1985).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111), 1130–1132 (1993).
  • Tomac A, Lindqvist E, Lin LF et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373(6512), 335–339 (1995).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9(5), 589–595 (2003).
  • Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59(3), 459–466 (2006).
  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol. 57(2), 298–302 (2005).
  • Slevin JT, Gash DM, Smith CD et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J. Neurosurg. 106(4), 614–620 (2007).
  • Choi-Lundberg DL, Lin Q, Chang YN et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275(5301), 838–841 (1997).
  • Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492), 767–773 (2000).
  • Su X, Kells AP, Huang EJ et al. Safety evaluation of AAV2–GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum. Gene Ther. 20(12), 1627–1640 (2009).
  • Kells AP, Eberling J, Su X et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J. Neurosci. 30(28), 9567–9577 (2010).
  • Manfredsson FP, Tumer N, Erdos B et al. Nigrostriatal rAAV-mediated GDNF overexpression induces robust weight loss in a rat model of age-related obesity. Mol. Ther. 17(6), 980–991 (2009).
  • Bartus RT, Brown L, Wilson A et al. Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson’s disease. Neurobiol. Dis. 44(1), 38–52 (2011).
  • Richardson RM, Kells AP, Rosenbluth KH et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol. Ther. 19(6), 1048–1057 (2011).
  • Kotzbauer PT, Lampe PA, Heuckeroth RO et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384(6608), 467–470 (1996).
  • Horger BA, Nishimura MC, Armanini MP et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 18(13), 4929–4937 (1998).
  • Kordower JH, Herzog CD, Dass B et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60(6), 706–715 (2006).
  • Herzog CD, Dass B, Gasmi M et al. Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol. Ther. 16(10), 1737–1744 (2008).
  • Herzog CD, Brown L, Gammon D et al. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson’s disease. Neurosurgery 64(4), 602–612; discussion 612 (2009).
  • Marks WJ Jr, Ostrem JL, Verhagen L et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, Phase I trial. Lancet Neurol. 7(5), 400–408 (2008).
  • Marks WJ Jr, Bartus RT, Siffert J et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9(12), 1164–1172 (2010).
  • Huddleston DE, Factor SA. Of monkeys and men: analysis of the Phase 2 double-blind, sham-surgery controlled, randomized trial of AAV2-neurturin gene therapy for Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 11(4), 345–348 (2011).
  • Bartus RT, Herzog CD, Chu Y et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov. Disord. 26(1), 27–36 (2011).
  • Kettler R, Bartholini G, Pletscher A. In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin. Nature 249(456), 476–478 (1974).
  • Ichinose H, Ohye T, Fujita K et al. Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J. Neural Transm. Park. Dis. Dement. Sect. 8(1–2), 149–158 (1994).
  • Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J. Neural Transm. Suppl. 72, 113–120 (2007).
  • Bankiewicz KS, Eberling JL, Kohutnicka M et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. 164(1), 2–14 (2000).
  • Bankiewicz KS, Forsayeth J, Eberling JL et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 14(4), 564–570 (2006).
  • Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol. Ther. 18(8), 1458–1461 (2010).
  • Eberling JL, Jagust WJ, Christine CW et al. Results from a Phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21), 1980–1983 (2008).
  • Christine CW, Starr PA, Larson PS et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20), 1662–1669 (2009).
  • Mittermeyer G, Christine CW, Rosenbluth KH et al. Long-term evaluation of a Phase 1 study of AADC gene therapy for Parkinson’s disease. Hum. Gene Ther. 23(4), 377–381 (2012).
  • Richardson RM, Gimenez F, Salegio EA et al. T2 imaging in monitoring of intraparenchymal real-time convection-enhanced delivery. Neurosurgery 69(1), 154–163; discussion 163 (2011).
  • Richardson RM, Kells AP, Martin AJ et al. Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact. Funct. Neurosurg. 89(3), 141–151 (2011).
  • Muramatsu S, Fujimoto K, Kato S et al. A Phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther. 18(9), 1731–1735 (2010).
  • Kirik D, Georgievska B, Burger C et al. Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of l-dopa using rAAV-mediated gene transfer. Proc. Natl Acad. Sci. USA 99(7), 4708–4713 (2002).
  • Carlsson T, Winkler C, Burger C et al. Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous l-DOPA delivery using rAAV vectors. Brain 128(Pt 3), 559–569 (2005).
  • Leriche L, Björklund T, Breysse N et al. Positron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy. J. Neurosci. 29(5), 1544–1553 (2009).
  • Björklund T, Carlsson T, Cederfjäll EA, Carta M, Kirik D. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson’s disease. Brain 133(Pt 2), 496–511 (2010).
  • Azzouz M, Martin-Rendon E, Barber RD et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic l-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J. Neurosci. 22(23), 10302–10312 (2002).
  • Jarraya B, Boulet S, Ralph GS et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med. 1(2), 2ra4 (2009).
  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain 127(Pt 1), 4–20 (2004).
  • Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975), 1436–1438 (1990).
  • Bu DF, Erlander MG, Hitz BC et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc. Natl Acad. Sci. USA 89(6), 2115–2119 (1992).
  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron 7(1), 91–100 (1991).
  • Feldblum S, Erlander MG, Tobin AJ. Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J. Neurosci. Res. 34(6), 689–706 (1993).
  • Luo J, Kaplitt MG, Fitzsimons HL et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298(5592), 425–429 (2002).
  • Lee B, Lee H, Nam YR, Oh JH, Cho YH, Chang JW. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 12(15), 1215–1222 (2005).
  • Emborg ME, Carbon M, Holden JE et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab. 27(3), 501–509 (2007).
  • Kaplitt MG, Feigin A, Tang C et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, Phase I trial. Lancet 369(9579), 2097–2105 (2007).
  • LeWitt PA, Rezai AR, Leehey MA et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10(4), 309–319 (2011).
  • Fountaine TM, Wade-Martins R. RNA interference-mediated knockdown of α-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. J. Neurosci. Res. 85(2), 351–363 (2007).
  • Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of α-synuclein expression and toxicity by microRNA-7. Proc. Natl Acad. Sci. USA 106(31), 13052–13057 (2009).
  • Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp. Neurol. 198(2), 382–390 (2006).
  • McCormack AL, Mak SK, Henderson JM, Bumcrot D, Farrer MJ, Di Monte DA. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS ONE 5(8), e12122 (2010).
  • de Yñigo-Mojado L, Martín-Ruíz I, Sutherland JD. Efficient allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi. PLoS ONE 6(6), e21352 (2011).
  • Sibley CR, Wood MJ. Identification of allele-specific RNAi effectors targeting genetic forms of Parkinson’s disease. PLoS ONE 6(10), e26194 (2011).
  • Sibley CR, Seow Y, Curtis H, Weinberg MS, Wood MJ. Silencing of Parkinson’s disease-associated genes with artificial mirtron mimics of miR-1224. Nucleic Acids Res. 40(19), 9863–9875 (2012).
  • Hyun DH, Lee M, Hattori N et al. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J. Biol. Chem. 277(32), 28572–28577 (2002).
  • Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183(5), 795–803 (2008).
  • Lo Bianco C, Schneider BL, Bauer M et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 101(50), 17510–17515 (2004).
  • Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for α-synucleinopathy: a rat model of Parkinson’s disease. Hum. Gene Ther. 16(2), 262–270 (2005).
  • Vercammen L, Van der Perren A, Vaudano E et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol. Ther. 14(5), 716–723 (2006).
  • Manfredsson FP, Burger C, Sullivan LF, Muzyczka N, Lewin AS, Mandel RJ. rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson’s disease. Exp. Neurol. 207(2), 289–301 (2007).
  • Paterna JC, Leng A, Weber E, Feldon J, Büeler H. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol. Ther. 15(4), 698–704 (2007).
  • Yasuda T, Miyachi S, Kitagawa R et al. Neuronal specificity of α-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience 144(2), 743–753 (2007).
  • Yasuda T, Hayakawa H, Nihira T et al. Parkin-mediated protection of dopaminergic neurons in a chronic MPTP-minipump mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 70(8), 686–697 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.