99
Views
0
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s Disease - Review

Network modeling to identify new mechanisms and therapeutic targets for Parkinson’s disease

, , &
Pages 685-693 | Published online: 09 Jan 2014

References

  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 373(9680), 2055–2066 (2009).
  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18(R1), R48–R59 (2009).
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39(6), 889–909 (2003).
  • Iranzo A, Graus F, Clover L et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann. Neurol. 59(1), 178–181 (2006).
  • Kyttaris VC. Kinase inhibitors: a new class of antirheumatic drugs. Drug Des. Devel. Ther. 6, 245–250 (2012).
  • Lounkine E, Keiser MJ, Whitebread S et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403), 361–367 (2012).
  • Woolf CJ. Overcoming obstacles to developing new analgesics. Nat. Med. 16(11), 1241–1247 (2010).
  • Mani R, St Onge RP, Hartman JL 4th, Giaever G, Roth FP. Defining genetic interaction. Proc. Natl Acad. Sci. USA 105(9), 3461–3466 (2008).
  • Wang J, Zhang Y, Marian C, Ressom HW. Identification of aberrant pathways and network activities from high-throughput data. Brief. Bioinformatics 13(4), 406–419 (2012).
  • Bakir-Gungor B, Sezerman OU. A new methodology to associate SNPs with human diseases according to their pathway related context. PLoS ONE 6(10), e26277 (2011).
  • Bras J, Guerreiro R, Hardy J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat. Rev. Neurosci. 13(7), 453–464 (2012).
  • May P, Christian N, Ebenhöh O, Weckwerth W, Walther D. Integration of proteomic and metabolomic profiling as well as metabolic modeling for the functional analysis of metabolic networks. Methods Mol. Biol. 694, 341–363 (2011).
  • Cheema AK, Timofeeva O, Varghese R et al. Integrated analysis of ATM mediated gene and protein expression impacting cellular metabolism. J. Proteome Res. 10(5), 2651–2657 (2011).
  • Scholz SW, Mhyre T, Ressom H, Shah S, Federoff HJ. Genomics and bioinformatics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2(7), a009449 (2012).
  • Warde-Farley D, Donaldson SL, Comes O et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38(Web Server issue), W214–W220 (2010).
  • MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4), 587–593 (2006).
  • Ramonet D, Daher JP, Lin BM et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS ONE 6(4), e18568 (2011).
  • Shin N, Jeong H, Kwon J et al. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314(10), 2055–2065 (2008).
  • Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J. Neurosci. 29(4), 1011–1016 (2009).
  • Lee BD, Dawson VL, Dawson TM. Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson’s disease. Trends Pharmacol. Sci. 33(7), 365–373 (2012).
  • Cookson MR. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci. 11(12), 791–797 (2010).
  • Greggio E, Bisaglia M, Civiero L, Bubacco L. Leucine-rich repeat kinase 2 and α-synuclein: intersecting pathways in the pathogenesis of Parkinson’s disease? Mol. Neurodegener. 6(1), 6 (2011).
  • Liu Z, Hamamichi S, Lee BD et al. Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum. Mol. Genet. 20(20), 3933–3942 (2011).
  • Ding X, Goldberg MS. Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS ONE 4(6), e5949 (2009).
  • Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183(5), 795–803 (2008).
  • Gan-Or Z, Bar-Shira A, Mirelman A, Gurevich T, Giladi N, Orr-Urtreger A. The age at motor symptoms onset in LRRK2-associated Parkinson’s disease is affected by a variation in the MAPT locus: a possible interaction. J. Mol. Neurosci. 46(3), 541–544 (2012).
  • Massie A, Goursaud S, Schallier A et al. Time-dependent changes in GLT-1 functioning in striatum of hemi-Parkinson rats. Neurochem. Int. 57(5), 572–578 (2010).
  • Pauli A, Prata DP, Mechelli A et al. Interaction between effects of genes coding for dopamine and glutamate transmission on striatal and parahippocampal function. Hum. Brain Mapp. doi:10.1002/hbm.22061 (2012) (Epub ahead of print).
  • Simón-Sánchez J, Schulte C, Bras JM et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41(12), 1308–1312 (2009).
  • Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 73(2), 155–169 (2013).
  • Schneeberger A, Mandler M, Mattner F, Schmidt W. Vaccination for Parkinson’s disease. Parkinsonism Relat. Disord. 18(Suppl. 1), S11–S13 (2012).
  • Dolgin E. First therapy targeting Parkinson’s proteins enters clinical trials. Nat. Med. 18(7), 992–993 (2012).
  • Krenz A, Falkenburger BH, Gerhardt E, Drinkut A, Schulz JB. Aggregate formation and toxicity by wild-type and R621C synphilin-1 in the nigrostriatal system of mice using adenoviral vectors. J. Neurochem. 108(1), 139–146 (2009).
  • Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19(24), 4861–4870 (2010).
  • Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila Parkin mutants. Proc. Natl Acad. Sci. USA 100(7), 4078–4083 (2003).
  • Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem. Int. 51(2–4), 105–111 (2007).
  • Cookson MR. Parkinsonism due to mutations in PINK1, Parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect. Med. 2(9), a009415 (2012).
  • Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31(14), 3038–3062 (2012).
  • Lev N, Barhum Y, Pilosof NS et al. DJ-1 protects against dopamine toxicity: implications for Parkinson’s disease and aging. J. Gerontol. A Biol. Sci. Med. Sci. 68(3), 215–225 (2013).
  • Al Sweidi S, Sánchez MG, Bourque M, Morissette M, Dluzen D, Di Paolo T. Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in Parkinson’s disease. J. Neuroendocrinol. 24(1), 48–61 (2012).
  • Baraka AM, Korish AA, Soliman GA, Kamal H. The possible role of estrogen and selective estrogen receptor modulators in a rat model of Parkinson’s disease. Life Sci. 88(19–20), 879–885 (2011).
  • Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev. 62(2), 155–198 (2010).
  • Pankratz N, Beecham GW, DeStefano AL et al.; PD GWAS Consortium. Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann. Neurol. 71(3), 370–384 (2012).
  • Wang DY, McKague B, Liss SN, Edwards EA. Gene expression profiles for detecting and distinguishing potential endocrine-disrupting compounds in environmental samples. Environ. Sci. Technol. 38(23), 6396–6406 (2004).
  • Tanaka Y, Tashjian AH Jr. Calmodulin is a selective mediator of Ca(2+)-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc. Natl Acad. Sci. USA 92(8), 3244–3248 (1995).
  • Damaj MI. Nicotinic regulation of calcium/calmodulin-dependent protein kinase II activation in the spinal cord. J. Pharmacol. Exp. Ther. 320(1), 244–249 (2007).
  • Ahn EY, Pan G, Oh JH, Tytler EM, McDonald JM. The combination of calmodulin antagonists and interferon-γ induces apoptosis through caspase-dependent and -independent pathways in cholangiocarcinoma cells. Am. J. Pathol. 163(5), 2053–2063 (2003).
  • Sugama S, Wirz SA, Barr AM, Conti B, Bartfai T, Shibasaki T. Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Neuroscience 128(2), 451–458 (2004).
  • Moriguchi S, Yabuki Y, Fukunaga K. Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. J. Neurochem. 120(4), 541–551 (2012).
  • Sharma M, Ioannidis JP, Aasly JO et al.; GEO-PD Consortium. Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79(7), 659–667 (2012).
  • Lill CM, Roehr JT, McQueen MB et al.; 23andMe Genetic Epidemiology of Parkinson’s Disease Consortium; International Parkinson’s Disease Genomics Consortium; Parkinson’s Disease GWAS Consortium; Wellcome Trust Case Control Consortium 2. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 8(3), e1002548 (2012).
  • Nalls MA, Plagnol V, Hernandez DG et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766), 641–649 (2011).
  • Moriguchi T, Urushiyama S, Hisamoto N et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J. Biol. Chem. 280(52), 42685–42693 (2005).
  • Cheng F, Li X, Li Y et al. α-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death. J. Neurochem. 119(4), 815–825 (2011).
  • Fliri AF, Loging WT, Volkmann RA. Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol. Sci. 31(11), 547–555 (2010).
  • Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11(8), 620–632 (2012).
  • Tang KC, Reboud J, Kwok YL, Peng SL, Yobas L. Lateral patch-clamping in a standard 1536-well microplate format. Lab. Chip 10(8), 1044–1050 (2010).
  • Chen CY, Tu TY, Jong DS, Wo AM. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange. Biotechnol. Bioeng. 108(6), 1395–1403 (2011).
  • Brouzes E, Medkova M, Savenelli N et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106(34), 14195–14200 (2009).
  • Chen AA, Underhill GH, Bhatia SN. Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr. Biol. (Camb.) 2(10), 517–527 (2010).
  • Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 8(2), 171–176 (2011).
  • Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, aoo9944 (2012).
  • Lawal HO, Terrell A, Lam HA et al. Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression. Mol. Psychiatry doi:10.1038/mp.2012.170 (2012) (Epub ahead of print).
  • MacLeod DA, Rhinn H, Kuwahara T et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77(3), 425–439 (2013).
  • Goldberg JA, Guzman JN, Estep CM et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci. 15(10), 1414–1421 (2012).
  • Mount MP, Lira A, Grimes D et al. Involvement of interferon-γ in microglial-mediated loss of dopaminergic neurons. J. Neurosci. 27(12), 3328–3337 (2007).
  • Barcia C, Ros CM, Annese V et al. IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis. 2, e142 (2011).
  • Chakrabarty P, Ceballos-Diaz C, Lin WL et al. Interferon-γ induces progressive nigrostriatal degeneration and basal ganglia calcification. Nat. Neurosci. 14(6), 694–696 (2011).
  • Venderova K, Kabbach G, Abdel-Messih E et al. Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum. Mol. Genet. 18(22), 4390–4404 (2009).
  • Lei P, Ayton S, Finkelstein DI et al. Tau deficiency induces Parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med. 18(2), 291–295 (2012).
  • Yamamoto H, Yamauchi E, Taniguchi H, Ono T, Miyamoto E. Phosphorylation of microtubule-associated protein tau by Ca2+/calmodulin-dependent protein kinase II in its tubulin binding sites. Arch. Biochem. Biophys. 408(2), 255–262 (2002).
  • Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13(2), 77–93 (2012).
  • Zheng B, Liao Z, Locascio JJ et al.; Global PD Gene Expression (GPEX) Consortium. PGC-1a, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2(52), 52ra73 (2010).
  • Puddifoot C, Martel MA, Soriano FX et al. PGC-1a negatively regulates extrasynaptic NMDAR activity and excitotoxicity. J. Neurosci. 32(20), 6995–7000 (2012).
  • Leroy E, Boyer R, Auburger G et al. The ubiquitin pathway in Parkinson’s disease. Nature 395(6701), 451–452 (1998).
  • Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ. Ubiquitinylation of α-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS ONE 6(2), e14695 (2011).
  • Fukae J, Sato S, Shiba K et al. Programmed cell death-2 isoform 1 is ubiquitinated by Parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson’s disease. FEBS Lett. 583(3), 521–525 (2009).
  • Alvarez-Castelao B, Castaño JG. Synphilin-1 inhibits α-synuclein degradation by the proteasome. Cell. Mol. Life Sci. 68(15), 2643–2654 (2011).
  • Büttner S, Delay C, Franssens V et al. Synphilin-1 enhances α-synuclein aggregation in yeast and contributes to cellular stress and cell death in a Sir2-dependent manner. PLoS ONE 5(10), e13700 (2010).
  • Butler EK, Voigt A, Lutz AK et al. The mitochondrial chaperone protein TRAP1 mitigates α-synuclein toxicity. PLoS Genet. 8(2), e1002488 (2012).
  • Murakami M, Ito H, Hagiwara K et al. Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription. J. Cell. Biochem. 112(11), 3449–3458 (2011).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111), 1130–1132 (1993).
  • Bodis-Wollner I. Foveal vision is impaired in Parkinson’s disease. Parkinsonism Relat. Disord. 19(1), 1–14 (2013).
  • Vitale C, Marcelli V, Allocca R et al. Hearing impairment in Parkinson’s disease: expanding the nonmotor phenotype. Mov. Disord. 27(12), 1530–1535 (2012).
  • Santos-García D, Aneiros-Díaz A, Macias-Arribi M, Llaneza-González MA, Abella-Corral J, Santos-Canelles H. Sensory symptoms in Parkinson’s disease. Rev. Neurol. 50(Suppl. 2), S65–S74 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.