305
Views
41
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s Disease - Review

Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms

, &
Pages 671-684 | Published online: 09 Jan 2014

References

  • Forno LS. Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55(3), 259–272 (1996).
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39(6), 889–909 (2003).
  • Thomas B, Beal MF. Parkinson’s disease. Hum. Mol. Genet. 16 Spec No. 2, R183–R194 (2007).
  • Cookson MR, Bandmann O. Parkinson’s disease: insights from pathways. Hum. Mol. Genet. 19(R1), R21–R27 (2010).
  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat. Med. 10(Suppl.), S2–S9 (2004).
  • Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology 66(10 Suppl. 4), S24–S36 (2006).
  • Mosley RL, Benner EJ, Kadiu I et al. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin. Neurosci. Res. 6(5), 261–281 (2006).
  • Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145(4), 1233–1248 (2007).
  • Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4), 478–500 (2009).
  • Riederer PF. Views on neurodegeneration as a basis for neuroprotective strategies. Med. Sci. Monit. 10, RA287–RA290 (2004).
  • Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181(3), 195–213 (1990).
  • Alves da Costa C, Checler F. Apoptosis in Parkinson’s disease: is p53 the missing link between genetic and sporadic Parkinsonism? Cell. Signal. 23(6), 963–968 (2011).
  • Mochizuki H, Nishi K, Mizuno Y. Iron–melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 2, 1–7 (1993).
  • Pan T, Kondo S, Le W, Jankovic J. The role of autophagy–lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8), 1969–1978 (2008).
  • Mizuno Y, Mochizuki H, Sugita Y, Goto K. Apoptosis in neurodegenerative disorders. Intern. Med. 37(2), 192–193 (1998).
  • Jellinger KA. Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5(1), 1–17 (2001).
  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann. Neurol. 53(Suppl. 3), S61–S70; discussion S70 (2003).
  • Simunovic F, Yi M, Wang Y et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132(Pt 7), 1795–1809 (2009).
  • Anglade P, Vyas S, Javoy-Agid F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12(1), 25–31 (1997).
  • Reed JC. Apoptosis-based therapies. Nat. Rev. Drug Discov. 1(2), 111–121 (2002).
  • Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4(5), 365–375 (2003).
  • Fischer U, Schulze-Osthoff K. New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev. 57(2), 187–215 (2005).
  • Schapira AH, Bezard E, Brotchie J et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat. Rev. Drug Discov. 5(10), 845–854 (2006).
  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311(5985), 467–469 (1984).
  • Finberg JP, Takeshima T, Johnston JM, Commissiong JW. Increased survival of dopaminergic neurons by rasagiline, a monoamine oxidase B inhibitor. Neuroreport 9(4), 703–707 (1998).
  • Riederer P, Lachenmayer L. Selegiline’s neuroprotective capacity revisited. J. Neural Transm. 110(11), 1273–1278 (2003).
  • Magyar K, Pálfi M, Tábi T, Kalász H, Szende B, Szöko E. Pharmacological aspects of (-)-deprenyl. Curr. Med. Chem. 11(15), 2017–2031 (2004).
  • Ebadi M, Brown-Borg H, Ren J et al. Therapeutic efficacy of selegiline in neurodegenerative disorders and neurological diseases. Curr. Drug Targets 7(11), 1513–1529 (2006).
  • Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7(4), 295–309 (2006).
  • Naoi M, Maruyama W. Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr. Pharm. Des. 16(25), 2799–2817 (2010).
  • Damier P, Kastner A, Agid Y, Hirsch EC. Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46(5), 1262–1269 (1996).
  • Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol. Neurobiol. 30(1), 77–89 (2004).
  • Mallajosyula JK, Kaur D, Chinta SJ et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS ONE 3(2), e1616 (2008).
  • Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M. Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J. Neurochem. 96(2), 541–549 (2006).
  • De Zutter GS, Davis RJ. Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc. Natl Acad. Sci. USA 98(11), 6168–6173 (2001).
  • Ou XM, Chen K, Shih JC. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc. Natl Acad. Sci. USA 103(29), 10923–10928 (2006).
  • Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billett EE. Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. J. Neurochem. 103(6), 2189–2199 (2007).
  • Fitzgerald JC, Ufer C, Billett EE. A link between monoamine oxidase-A and apoptosis in serum deprived human SH-SY5Y neuroblastoma cells. J. Neural Transm. 114(6), 807–810 (2007).
  • Maruyama W, Nitta A, Shamoto-Nagai M et al. N-Propargyl-1®-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem. Int. 44(6), 393–400 (2004).
  • Naoi M, Maruyama W, Inaba-Hasegawa K, Akao Y. Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection. Int. Rev. Neurobiol. 100, 85–106 (2011).
  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M. Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J. Neural Transm. 119(4), 405–414 (2012).
  • Maruyama W, Naoi M. Induction of glial cell-line-derived and brain-derived neurotrophic factors by rasagiline and (-)deprenyl: a way to a disease-modifying therapy? J. Neural Transm. 120, 83–89 (2013).
  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC. Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase B. J. Neurochem. 45(4), 1049–1054 (1985).
  • Heikkila RE, Duvoisin RC, Finberg JP, Youdim MB. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur. J. Pharmacol. 116(3), 313–317 (1985).
  • Kupsch A, Sautter J, Götz ME et al. Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J. Neural Transm. 108(8–9), 985–1009 (2001).
  • Sharma SK, Carlson EC, Ebadi M. Neuroprotective actions of selegiline in inhibiting 1-methyl, 4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons. J. Neurocytol. 32(4), 329–343 (2003).
  • Blandini F, Armentero MT, Fancellu R, Blaugrund E, Nappi G. Neuroprotective effect of rasagiline in a rodent model of Parkinson’s disease. Exp. Neurol. 187(2), 455–459 (2004).
  • Zhang X, Zuo DM, Davis BA, Boulton AA, Yu PH. Immunohistochemical evidence of neuroprotection by R(-)-deprenyl and N-(2-hexyl)-N-methylpropargylamine on DSP-4-induced degeneration of rat brain noradrenergic axons and terminals. J. Neurosci. Res. 43(4), 482–489 (1996).
  • Fowler CJ, Tipton KF. Deamination of 5-hydroxytryptamine by both forms of monoamine oxidase in the rat brain. J. Neurochem. 38(3), 733–736 (1982).
  • Ricci A, Mancini M, Strocchi P, Bongrani S, Bronzetti E. Deficits in cholinergic neurotransmission markers induced by ethylcholine mustard aziridinium (AF64A) in the rat hippocampus: sensitivity to treatment with the monoamine oxidase-B inhibitor L-deprenyl. Drugs Exp. Clin. Res. 18(5), 163–171 (1992).
  • Salo PT, Tatton WG. Deprenyl reduces the death of motoneurons caused by axotomy. J. Neurosci. Res. 31(2), 394–400 (1992).
  • Speiser Z, Katzir O, Rehavi M, Zabarski T, Cohen S. Sparing by rasagiline (TVP-1012) of cholinergic functions and behavior in the postnatal anoxia rat. Pharmacol. Biochem. Behav. 60(2), 387–393 (1998).
  • Speiser Z, Mayk A, Litinetsky L et al. Rasagiline is neuroprotective in an experimental model of brain ischemia in the rat. J. Neural Transm. 114(5), 595–605 (2007).
  • Stefanova N, Poewe W, Wenning GK. Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp. Neurol. 210(2), 421–427 (2008).
  • Eliash S, Dror V, Cohen S, Rehavi M. Neuroprotection by rasagiline in thiamine deficient rats. Brain Res. 1256, 138–148 (2009).
  • Maruyama W, Abe T, Tohgi H, Dostert P, Naoi M. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in Parkinsonian cerebrospinal fluid. Ann. Neurol. 40(1), 119–122 (1996).
  • Naoi M, Maruyama W, Nakao N, Ibi T, Sahashi K, Benedetti MS. (R)salsolinol N-methyltransferase activity increases in Parkinsonian lymphocytes. Ann. Neurol. 43(2), 212–216 (1998).
  • Naoi M, Maruyama W, Dostert P et al. Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res. 709(2), 285–295 (1996).
  • Akao Y, Nakagawa Y, Maruyama W, Takahashi T, Naoi M. Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, is mediated by activation of caspase 3. Neurosci. Lett. 267(3), 153–156 (1999).
  • Maruyama W, Boulton AA, Davis BA, Dostert P, Naoi M. Enantio-specific induction of apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J. Neural Transm. 108(1), 11–24 (2001).
  • Maruyama W, Naoi M, Kasamatsu T et al. An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J. Neurochem. 69(1), 322–329 (1997).
  • Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M. Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J. Neurochem. 78(4), 727–735 (2001).
  • Akao Y, Maruyama W, Shimizu S et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J. Neurochem. 82(4), 913–923 (2002).
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 305(5684), 626–629 (2004).
  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87(1), 99–163 (2007).
  • Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12(5), 857–868 (2007).
  • Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10(7), 481–494 (2009).
  • Beutner G, Rück A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368(1), 7–18 (1998).
  • Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12(5), 815–833 (2007).
  • Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta 1813(4), 616–622 (2011).
  • Sileikyte J, Petronilli V, Zulian A et al. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J. Biol. Chem. 286(2), 1046–1053 (2011).
  • Tsujimoto Y, Shimizu S. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ. 7(12), 1174–1181 (2000).
  • Wadia JS, Chalmers-Redman RM, Ju WJ et al. Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J. Neurosci. 18(3), 932–947 (1998).
  • Lee CS, Lee CS, Ko HH, Song JH, Han ES. Effect of R-(-)-deprenyl and harmaline on dopamine- and peroxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem. Res. 27(3), 215–224 (2002).
  • Maruyama W, Naoi M. Neuroprotection by (-)-deprenyl and related compounds. Mech. Ageing Dev. 111(2–3), 189–200 (1999).
  • Maruyama W, Yamamoto T, Kitani K, Carrillo MC, Youdim M, Naoi M. Mechanism underlying anti-apoptotic activity of a (-)deprenyl-related propargylamine, rasagiline. Mech. Ageing Dev. 116(2–3), 181–191 (2000).
  • Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol. Teratol. 24(5), 675–682 (2002).
  • Naoi M, Maruyama W, Yi H. Rasagiline prevents apoptosis induced by PK11195, a ligand of outer membrane translocator protein (18 kDA), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J. Neural Transm. (2013) (In Press).
  • Galluzzi L, Morselli E, Kepp O, Kroemer G. Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim. Biophys. Acta 1787(5), 402–413 (2009).
  • Sayeed I, Parvez S, Wali B, Siemen D, Stein DG. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res. 1263, 165–173 (2009).
  • Martel C, Huynh le H, Garnier A, Ventura-Clapier R, Brenner C. Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem. Res. Int. 2012, 213403 (2012).
  • Soane L, Fiskum G. Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J. Bioenerg. Biomembr. 37(3), 179–190 (2005).
  • Vila M, Jackson-Lewis V, Vukosavic S et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 98(5), 2837–2842 (2001).
  • Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 147(Suppl. 1), S287–S296 (2006).
  • Wu RM, Chiueh CC, Pert A, Murphy DL. Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur. J. Pharmacol. 243(3), 241–247 (1993).
  • Thomas CE, Huber EW, Ohlweiler DF. Hydroxyl and peroxyl radical trapping by the monoamine oxidase-B inhibitors deprenyl and MDL 72,974A: implications for protection of biological substrates. Free Radic. Biol. Med. 22(4), 733–737 (1997).
  • Kitani K, Minami C, Isobe K et al. Why (-)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech. Ageing Dev. 123(8), 1087–1100 (2002).
  • Subramanian MV, James TJ. Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Stress Chaperones 15(5), 743–751 (2010).
  • Andoh T, Chock PB, Murphy DL, Chiueh CC. Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl. Mol. Pharmacol. 68(5), 1408–1414 (2005).
  • Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG. Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol. Pharmacol. 57(1), 2–12 (2000).
  • Ou XM, Stockmeier CA, Meltzer HY et al. A novel role for glyceraldehyde-3-phosphate dehydrogenase and monoamine oxidase B cascade in ethanol-induced cellular damage. Biol. Psychiatry 67(9), 855–863 (2010).
  • Hara MR, Thomas B, Cascio MB et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc. Natl Acad. Sci. USA 103(10), 3887–3889 (2006).
  • Ou XM, Lu D, Johnson C et al. Glyceraldehyde-3-phosphate dehydrogenase-monoamine oxidase B-mediated cell death-induced by ethanol is prevented by rasagiline and 1-R-aminoindan. Neurotox. Res. 16(2), 148–159 (2009).
  • Shacka JJ, Roth KA. Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr. Drug Targets. CNS Neurol. Disord. 4(1), 25–39 (2005).
  • Schwartz PS, Hockenbery DM. Bcl-2-related survival proteins. Cell Death Differ. 13(8), 1250–1255 (2006).
  • Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA 97(7), 3100–3105 (2000).
  • Malik JM, Shevtsova Z, Bähr M, Kügler S. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol. Ther. 11(3), 373–381 (2005).
  • Offen D, Beart PM, Cheung NS et al. Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc. Natl Acad. Sci. USA 95(10), 5789–5794 (1998).
  • Natsume A, Mata M, Goss J et al. Bcl-2 and GDNF delivered by HSV-mediated gene transfer act additively to protect dopaminergic neurons from 6-OHDA-induced degeneration. Exp. Neurol. 169(2), 231–238 (2001).
  • Cao YJ, Shibata T, Rainov NG. Liposome-mediated transfer of the Bcl-2 gene results in neuroprotection after in vivo transient focal cerebral ischemia in an animal model. Gene Ther. 9(6), 415–419 (2002).
  • Yang J, Liu X, Bhalla K et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275(5303), 1129–1132 (1997).
  • Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka Y. Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. J. Neural Transm. Suppl. 71, 67–77 (2006).
  • Naoi M, Maruyama W, Inaba-Hasegawa K. Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival. Curr. Top. Med. Chem. 12(20), 2177–2188 (2012).
  • Chiou SH, Ku HH, Tsai TH et al. Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway. Br. J. Pharmacol. 148(5), 587–598 (2006).
  • Yi H, Maruyama W, Akao Y et al. N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J. Neural Transm. 113(1), 21–32 (2006).
  • Grimsby J, Toth M, Chen K et al. Increased stress response and β-phenylethylamine in MAOB-deficient mice. Nat. Genet. 17(2), 206–210 (1997).
  • Ekblom J, Oreland L, Chen K, Shih JC. Is there a ‘non-MAO’ macromolecular target for L-deprenyl?: studies on MAOB mutant mice. Life Sci. 63(12), PL181–PL186 (1998).
  • Pugazhenthi S, Nesterova A, Sable C et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J. Biol. Chem. 275(15), 10761–10766 (2000).
  • Naoi M, Maruyama W, Yi H, Akao Y, Yamaoka Y, Shamoto-Nagai M. Neuroprotection by propargylamines in Parkinson’s disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers. J. Neural Transm. Suppl. 72, 121–131 (2007).
  • Cammarota M, Paratcha G, Bevilaqua LR et al. Cyclic AMP-responsive element binding protein in brain mitochondria. J. Neurochem. 72(6), 2272–2277 (1999).
  • Lee J, Kim CH, Simon DK et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 280(49), 40398–40401 (2005).
  • Kulich SM, Horbinski C, Patel M, Chu CT. 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med. 43(3), 372–383 (2007).
  • Shih JC, Chen K. Regulation of MAO-A and MAO-B gene expression. Curr. Med. Chem. 11(15), 1995–2005 (2004).
  • Shih JC, Wu JB, Chen K. Transcriptional regulation and multiple functions of MAO genes. J. Neural Transm. 118(7), 979–986 (2011).
  • Ou XM, Chen K, Shih JC. Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J. Biol. Chem. 281(30), 21512–21525 (2006).
  • Duncan J, Johnson S, Ou XM. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov. Ther. 6(3), 112–122 (2012).
  • Cao X, Li XM, Mousseau DD. Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signalling pathways. Life Sci. 85(5–6), 262–268 (2009).
  • Wu JB, Shih JC. Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation. Mol. Pharmacol. 80(4), 714–723 (2011).
  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M. Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J. Neural Transm. 120(3), 435–444 (2013).
  • Hubálek F, Binda C, Li M et al. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues. J. Med. Chem. 47(7), 1760–1766 (2004).
  • Binda C, Hubálek F, Li M et al. Binding of rasagiline-related inhibitors to human monoamine oxidases: a kinetic and crystallographic analysis. J. Med. Chem. 48(26), 8148–8154 (2005).
  • Raddatz R, Parini A, Lanier SM. Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J. Biol. Chem. 270(46), 27961–27968 (1995).
  • Anderson NJ, Seif I, Nutt DJ, Hudson AL, Robinson ES. Autoradiographical distribution of imidazoline binding sites in monoamine oxidase A deficient mice. J. Neurochem. 96(6), 1551–1559 (2006).
  • Barac YD, Bar-Am O, Liani E et al. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline. PLoS ONE 7(11), e47890 (2012).
  • Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A. Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am. J. Physiol. Renal Physiol. 284(1), F167–F174 (2003).
  • Riedel O, Heuser I, Klotsche J, Dodel R, Wittchen HU; GEPAD Study Group. Occurrence risk and structure of depression in Parkinson disease with and without dementia: results from the GEPAD Study. J. Geriatr. Psychiatry Neurol. 23(1), 27–34 (2010).
  • Riederer P, Laux G. MAO-inhibitors in Parkinson’s Disease. Exp. Neurobiol. 20(1), 1–17 (2011).
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361(1473), 1545–1564 (2006).
  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gómez-Díaz R, López-Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci. 11(7), 755–761 (2008).
  • Rangasamy SB, Soderstrom K, Bakay RA, Kordower JH. Neurotrophic factor therapy for Parkinson’s disease. Prog. Brain Res. 184, 237–264 (2010).
  • Ichim G, Tauszig-Delamasure S, Mehlen P. Neurotrophins and cell death. Exp. Cell Res. 318(11), 1221–1228 (2012).
  • Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3(5), 383–394 (2002).
  • Paratcha G, Ledda F. GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci. 31(8), 384–391 (2008).
  • Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J. Chem. Neuroanat. 21(4), 277–288 (2001).
  • Choi-Lundberg DL, Lin Q, Chang YN et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275(5301), 838–841 (1997).
  • Oo TF, Kholodilov N, Burke RE. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J. Neurosci. 23(12), 5141–5148 (2003).
  • Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res. 1052(2), 119–129 (2005).
  • Pascual A, Hidalgo-Figueroa M, Gómez-Díaz R, López-Barneo J. GDNF and protection of adult central catecholaminergic neurons. J. Mol. Endocrinol. 46(3), R83–R92 (2011).
  • Burke RE, Antonelli M, Sulzer D. Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J. Neurochem. 71(2), 517–525 (1998).
  • Tomac A, Widenfalk J, Lin LF et al. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl Acad. Sci. USA 92(18), 8274–8278 (1995).
  • Biju K, Zhou Q, Li G et al. Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol. Ther. 18(8), 1536–1544 (2010).
  • Fletcher AM, Kowalczyk TH, Padegimas L, Cooper MJ, Yurek DM. Transgene expression in the striatum following intracerebral injections of DNA nanoparticles encoding for human glial cell line-derived neurotrophic factor. Neuroscience 194, 220–226 (2011).
  • Ciesielska A, Mittermeyer G, Hadaczek P, Kells AP, Forsayeth J, Bankiewicz KS. Anterograde axonal transport of AAV2-GDNF in rat basal ganglia. Mol. Ther. 19(5), 922–927 (2011).
  • Kirik D, Georgievska B, Björklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat. Neurosci. 7(2), 105–110 (2004).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9(5), 589–595 (2003).
  • Hong M, Mukhida K, Mendez I. GDNF therapy for Parkinson’s disease. Expert Rev. Neurother. 8(7), 1125–1139 (2008).
  • Aron L, Klein R. Repairing the Parkinsonian brain with neurotrophic factors. Trends Neurosci. 34(2), 88–100 (2011).
  • Slevin JT, Gash DM, Smith CD et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J. Neurosurg. 106(4), 614–620 (2007).
  • Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59(3), 459–466 (2006).
  • Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog. Neurobiol. 86(3), 186–215 (2008).
  • Bar-Am O, Weinreb O, Amit T, Youdim MB. Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J. 19(13), 1899–1901 (2005).
  • Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MB. Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J. Neural Transm. Suppl. 70, 457–465 (2006).
  • Weinreb O, Amit T, Bar-Am O, Youdim MB. Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann. NY Acad. Sci. 1122, 155–168 (2007).
  • Mizuta I, Ohta M, Ohta K et al. Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 279(3), 751–755 (2000).
  • Tang YP, Ma YL, Chao CC, Chen KY, Lee EH. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments. J. Neurosci. Res. 53(5), 593–604 (1998).
  • Mandel SA, Sagi Y, Amit T. Rasagiline promotes regeneration of substantia nigra dopaminergic neurons in post-MPTP-induced Parkinsonism via activation of tyrosine kinase receptor signaling pathway. Neurochem. Res. 32(10), 1694–1699 (2007).
  • Sagi Y, Mandel S, Amit T, Youdim MB. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol. Dis. 25(1), 35–44 (2007).
  • Parain K, Murer MG, Yan Q et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 10(3), 557–561 (1999).
  • Levivier M, Przedborski S, Bencsics C, Kang UJ. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci. 15(12), 7810–7820 (1995).
  • Gyárfás T, Knuuttila J, Lindholm P, Rantamäki T, Castrén E. Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-Parkinsonian drug therapy in vivo. Cell. Mol. Neurobiol. 30(3), 361–368 (2010).
  • Kontkanen O, Castrén E. Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res. 829(1–2), 190–192 (1999).
  • Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry 64(6), 527–532 (2008).
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 455(7215), 894–902 (2008).
  • Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I. Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res. 1211, 37–43 (2008).
  • Drzyzga LR, Marcinowska A, Obuchowicz E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res. Bull. 79(5), 248–257 (2009).
  • Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem. Res. 34(3), 536–541 (2009).
  • Eliash S, Dror V, Cohen S, Rehavi M. Neuroprotection by rasagiline in thiamine deficient rats. Brain Res. 1256, 138–148 (2009).
  • Tazik S, Johnson S, Lu D et al. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox. Res. 15(3), 284–290 (2009).
  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22(8), 3251–3261 (2002).
  • Westlund KN, Denney RM, Rose RM, Abell CW. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25(2), 439–456 (1988).
  • Riederer P, Konradi C, Hebenstreit G, Youdim MB. Neurochemical perspectives to the function of monoamine oxidase. Acta Neurol. Scand. Suppl. 126, 41–45 (1989).
  • Shih JC, Chen K, Ridd MJ. Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217 (1999).
  • Wang J, Edmondson DE. Topological probes of monoamine oxidases A and B in rat liver mitochondria: inhibition by TEMPO-substituted pargyline analogues and inactivation by proteolysis. Biochemistry 50(13), 2499–2505 (2011).
  • Bresjanac M, Antauer G. Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRα1 as well as GDNF in vivo. Exp. Neurol. 164(1), 53–59 (2000).
  • Li X, Oghi KA, Zhang J et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426(6964), 247–254 (2003).
  • Kobayashi H, Kawakami K, Asashima M, Nishinakamura R. Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech. Dev. 124(4), 290–303 (2007).
  • Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 16(11), 1423–1432 (2002).
  • Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease. The TEMPO study. Arch. Neurol. 59, 1937–1943 (2002).
  • Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch. Neurol. 61, 561–566 (2004).
  • Parkinson Study Group. A randomized placebo-controlled trial of rasagiline in Levodopa-treated patients with Parkinson disease and motor fluctuations. The PRESTO study. Arch. Neurol. 62, 241–248 (2005).
  • Olanow CW, Rascol O, Hauser R et al.; ADAGIO Study Investigators. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N. Engl. J. Med. 361(13), 1268–1278 (2009).
  • Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N. Engl. J. Med. 321, 1364–1371 (1989).
  • Ives NJ, Stowe RL, Marro J et al. Monoamine oxidase type B inhibitors in early Parkinson’s disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ 329(7466), 593 (2004).
  • Hung AY, Schwarzschild MA. Clinical trials for neuroprotection in Parkinson’s disease: overcoming angst and futility? Curr. Opin. Neurol. 20(4), 477–483 (2007).
  • Melega WP, Cho AK, Schmitz D, Kuczenski R, Segal DS. l-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived l-methamphetamine. J. Pharmacol. Exp. Ther. 288(2), 752–758 (1999).
  • Stephans S, Yamamoto B. Methamphetamines pretreatment and the vulnerability of the striatum to methamphetamine neurotoxicity. Neuroscience 72(3), 593–600 (1996).
  • Bar Am O, Amit T, Youdim MB. Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci. Lett. 355(3), 169–172 (2004).
  • Bar-Am O, Amit T, Youdim MB. Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J. Neurochem. 103(2), 500–508 (2007).
  • Shoulson I. An interim report of the effect of selegiline (l-deprenyl) on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. Eur. Neurol. 32(Suppl. 1), 46–53 (1992).
  • Vanacore N. What is the clinical significance of the findings from the delayed-start trial of rasagiline in Parkinson’s disease? Neuroepidemiology 35(3), 213 (2010).
  • Korczyn AD, Vakhapova V. Delayed start, rapid solution? Neuroepidemiology 35(3), 214 (2010).
  • Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology 74(14), 1143–1148 (2010).
  • Booij J, Berendse HW. Monitoring therapeutic effects in Parkinson’s disease by serial imaging of the nigrostriatal dopaminergic pathway. J. Neurol. Sci. 310(1–2), 40–43 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.