163
Views
42
CrossRef citations to date
0
Altmetric
Review

Lung microRNA: from development to disease

, , , &
Pages 373-385 | Published online: 09 Jan 2014

References

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science294(5543), 853–858 (2001).
  • Ambros V. The functions of animal microRNAs. Nature431(7006), 350–355 (2004).
  • Murphy D, Dancis B, Brown JR. The evolution of core proteins involved in microRNA biogenesis. BMC. Evol. Biol.8, 92 (2008).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Gregory RI, Yan KP, Amuthan G et al. The microprocessor complex mediates the genesis of microRNAs. Nature432(7014), 235–240 (2004).
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev.18(24), 3016–3027 (2004).
  • Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10(2), 185–191 (2004).
  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science303(5654), 95–98 (2004).
  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20(14), 1885–1898 (2006).
  • Chu CY, Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol.4(7), e210 (2006).
  • Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science297(5589), 2056–2060 (2002).
  • Liu J, Rivas FV, Wohlschlegel J, Yates JR III, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol.7(12), 1261–1266 (2005).
  • Meister G, Landthaler M, Peters L et al. Identification of novel argonaute-associated proteins. Curr. Biol.15(23), 2149–2155 (2005).
  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA11(11), 1640–1647 (2005).
  • Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev.21(15), 1857–1862 (2007).
  • Wulczyn FG, Smirnova L, Rybak A et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J.21(2), 415–426 (2007).
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell115(7), 787–798 (2003).
  • Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol.3(3), e85 (2005).
  • Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev.18(5), 504–511 (2004).
  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell27(1), 91–105 (2007).
  • Lai EC, Wiel C, Rubin GM. Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA10(2), 171–175 (2004).
  • Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res.69(8), 3245–3248 (2009).
  • Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5´ UTR as in the 3´ UTR. Proc. Natl Acad. Sci. USA104(23), 9667–9672 (2007).
  • Kim DH, Saetrom P, Snove O Jr, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA105(42), 16230–16235 (2008).
  • Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5´UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30(4), 460–471 (2008).
  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. RNA14(5), 872–877 (2008).
  • Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl Acad. Sci. USA105(39), 14879–14884 (2008).
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455(7216), 1124–1128 (2008).
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1), 15–20 (2005).
  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol.5(1), R1 (2003).
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol.2(11), e363 (2004).
  • Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics.24(3), 325–332 (2008).
  • Wu X, Piper-Hunter MG, Crawford M et al. MicroRNAs in the pathogenesis of lung cancer. J. Thorac. Oncol. (2009) (Epub ahead of print).
  • Nana-Sinkam SP, Hunter MG, Nuovo GJ et al. Integrating the MicroRNome into the study of lung disease. Am. J. Respir. Crit. Care Med.179(1), 4–10 (2009).
  • Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol. Ther.117(1), 94–104 (2008).
  • Ambros V. microRNAs: tiny regulators with great potential. Cell107(7), 823–826 (2001).
  • Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle6(17), 2127–2132 (2007).
  • Georgantas RW III, Hildreth R, Morisot S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl Acad. Sci. USA104(8), 2750–2755 (2007).
  • Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res.331(1), 57–66 (2008).
  • Matsubara H, Takeuchi T, Nishikawa E et al. Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene26(41), 6099–6105 (2007).
  • Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature432(7014), 226–230 (2004).
  • Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science303(5654), 83–86 (2004).
  • Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol.8(8), R173 (2007).
  • Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol.8(2), 120–130 (2008).
  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5(3), R13 (2004).
  • Thum T, Galuppo P, Wolf C et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation116(3), 258–267 (2007).
  • Zhao Y, Ransom JF, Li A et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell129(2), 303–317 (2007).
  • Lakshmipathy U, Love B, Goff LA et al. microRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev.16(6), 1003–1016 (2007).
  • Lu J, Guo S, Ebert BL et al. microRNA-mediated control of cell fate in megakaryocyte–erythrocyte progenitors. Dev. Cell14(6), 843–853 (2008).
  • Mendell JT. miRiad roles for the miR-17–92 cluster in development and disease. Cell133(2), 217–222 (2008).
  • Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X. Dicer function is essential for lung epithelium morphogenesis. Proc. Natl Acad. Sci. USA103(7), 2208–2213 (2006).
  • Ventura A, Young AG, Winslow MM et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell132(5), 875–886 (2008).
  • Wang Y, Weng T, Gou D, Chen Z, Chintagari NR, Liu L. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics8, 29 (2007).
  • Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev. Dyn.236(2), 572–580 (2007).
  • Bernstein E, Kim SY, Carmell MA et al. Dicer is essential for mouse development. Nat. Genet.35(3), 215–217 (2003).
  • Lu J, Qian J, Chen F, Tang X, Li C, Cardoso WV. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem. Biophys. Res. Commun.334(2), 319–323 (2005).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6(11), 857–866 (2006).
  • Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell122(1), 6–7 (2005).
  • Kumar MS, Erkeland SJ, Pester RE et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA105(10), 3903–3908 (2008).
  • Johnson SM, Grosshans H, Shingara J et al. RAS is regulated by the let-7 microRNA family. Cell120(5), 635–647 (2005).
  • Mourelatos Z, Dostie J, Paushkin S et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16(6), 720–728 (2002).
  • Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J. Mol. Biol.339(2), 327–335 (2004).
  • Landgraf P, Rusu M, Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129(7), 1401–1414 (2007).
  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435(7043), 839–843 (2005).
  • Lu Y, Okubo T, Rawlins E, Hogan BL. Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proc. Am. Thorac. Soc.5(3), 300–304 (2008).
  • Williams AE, Perry MM, Moschos SA, Lindsay MA. microRNA expression in the aging mouse lung. BMC Genomics8, 172 (2007).
  • Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev. Biol.310(2), 442–453 (2007).
  • Wikenheiser-Brokamp KA. Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development131(17), 4299–4310 (2004).
  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat. Genet.19(4), 348–355 (1998).
  • Freeman D, Lesche R, Kertesz N et al. Genetic background controls tumor development in PTEN-deficient mice. Cancer Res.66(13), 6492–6496 (2006).
  • Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA102(31), 10898–10903 (2005).
  • Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1. Cell130(2), 287–297 (2007).
  • Baltimore D, Boldin MP, O’connell RM, Rao DS, Taganov KD. microRNAs: new regulators of immune cell development and function. Nat. Immunol.9(8), 839–845 (2008).
  • Rodriguez A, Vigorito E, Clare S et al. Requirement of bic/microRNA-155 for normal immune function. Science316(5824), 608–611 (2007).
  • Johnnidis JB, Harris MH, Wheeler RT et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature451(7182), 1125–1129 (2008).
  • Lindsay MA. microRNAs and the immune response. Trends Immunol.29(7), 343–351 (2008).
  • Pedersen I, David M. MicroRNAs in the immune response. Cytokine43(3), 391–394 (2008).
  • Tili E, Michaille JJ, Calin GA. Expression and function of micro-RNAs in immune cells during normal or disease state. Int. J. Med. Sci.5(2), 73–79 (2008).
  • Thai TH, Calado DP, Casola S et al. Regulation of the germinal center response by microRNA-155. Science316(5824), 604–608 (2007).
  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104(5), 1604–1609 (2007).
  • Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol.179(8), 5082–5089 (2007).
  • Ceppi M, Pereira PM, Dunand-Sauthier I et al. microRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl Acad. Sci. USA106(8), 2735–2740 (2009).
  • Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA103(33), 12481–12486 (2006).
  • Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol.180(8), 5689–5698 (2008).
  • Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics8, 240 (2007).
  • Zhai Y, Zhong Z, Chen CY et al. Coordinated changes in mRNA turnover, translation, and RNA processing bodies in bronchial epithelial cells following inflammatory stimulation. Mol. Cell Biol.28(24), 7414–7426 (2008).
  • Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J.23(3), 806–812 (2009).
  • Schembri F, Sridhar S, Perdomo C et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl Acad. Sci. USA106(7), 2319–2324 (2009).
  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics 10. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99(24), 15524–15529 (2002).
  • Takamizawa J, Konishi H, Yanagisawa K et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64(11), 3753–3756 (2004).
  • Johnson CD, Esquela-Kerscher A, Stefani G et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67(16), 7713–7722 (2007).
  • He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature435(7043), 828–833 (2005).
  • Dews M, Homayouni A, Yu D et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet.38(9), 1060–1065 (2006).
  • Hayashita Y, Osada H, Tatematsu Y et al. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.65(21), 9628–9632 (2005).
  • Kim H, Kwon YM, Kim JS et al. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer107(5), 1042–1049 (2006).
  • Fabbri M, Garzon R, Cimmino A et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104(40), 15805–15810 (2007).
  • Garofalo M, Quintavalle C, Di LG et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene27(27), 3845–3855 (2008).
  • Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res.67(17), 7972–7976 (2007).
  • Nasser MW, Datta J, Nuovo G et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem.283(48), 33394–33405 (2008).
  • Chan JA, Krichevsky AM, Kosik KS. microRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65(14), 6029–6033 (2005).
  • Tavazoie SF, Alarcon C, Oskarsson T et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451(7175), 147–152 (2008).
  • Crawford M, Brawner E, Batte K et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun.373(4), 607–612 (2008).
  • Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer (2009) (Epub ahead of print).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib 6. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J. Biol. Chem.284(9), 5731–5741 (2009).
  • Weiss GJ, Bemis LT, Nakajima E et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol.19(6), 1053–1059 (2008).
  • Mascaux C, Laes JF, Anthoine G et al. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur. Respir. J.33(2), 352–359 (2009).
  • Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone. Carcinogenesis29(12), 2394–2399 (2008).
  • Yanaihara N, Caplen N, Bowman E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9(3), 189–198 (2006).
  • Yu SL, Chen HY, Chang GC et al. MicroRNA signature predicts survival and relapse in lung cancer 4. Cancer Cell13(1), 48–57 (2008).
  • Bommer GT, Gerin I, Feng Y et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol.17(15), 1298–1307 (2007).
  • Liang Y. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med. Genomics1, 61 (2008).
  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet.39(5), 673–677 (2007).
  • Karube Y, Tanaka H, Osada H et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci.96(2), 111–115 (2005).
  • Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res.67(20), 9609–9612 (2007).
  • Soussi T, Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell12(4), 303–312 (2007).
  • Tan Z, Randall G, Fan J et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum. Genet.81(4), 829–834 (2007).
  • Hu Z, Chen J, Tian T et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest.118(7), 2600–2608 (2008).
  • Chin LJ, Ratner E, Leng S et al. A SNP in a let-7 microRNA complementary site in the KRAS 3´ untranslated region increases non-small cell lung cancer risk. Cancer Res.68(20), 8535–8540 (2008).
  • Hunter MP, Ismail N, Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE3(11), e3694 (2008).
  • Wang K, Zhang S, Marzolf B et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl Acad. Sci. USA106(11), 4402–4407 (2009).
  • Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer10(1), 42–46 (2009).
  • Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol.112(1), 55–59 (2009).
  • Gilad S, Meiri E, Yogev Y et al. Serum microRNAs are promising novel biomarkers. PLoS ONE3(9), e3148 (2008).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.