89
Views
18
CrossRef citations to date
0
Altmetric
Review

Biomarkers of latent TB infection

&
Pages 387-401 | Published online: 09 Jan 2014

References

  • WHO Report. Global tuberculosis control: surveillance, planning financing. WHO/HTM/TB/2005. WHO, Geneva, Switzerland (2005).
  • WHO Report. Global tuberculosis control: surveillance, planning, financing. WHO, Geneva, Switzerland (2008).
  • Keane J. TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology44, 714–720 (2005).
  • Frothingham R, Stout JE, Hamilton CD. Current issues in global tuberculosis control. Int. J. Infect. Dis.9, 297–311 (2005).
  • Giri PK, Khuller GK. Is intranasal vaccination a feasible solution for tuberculosis? Expert Rev. Vaccines7(9), 1341–1356 (2008).
  • Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm. Rep.49, 1–51 (2000).
  • Mazurek GH, Villarino ME. Guidelines for using the QuantiFERON-TB test for diagnosing latent Mycobacterium tuberculosis infection. CDC. MMWR Recomm. Rep.52, 15–18 (2003).
  • Cunningham J, Perkins M; WHO/TDR Tuberculosis Diagnostics Economic Working Group. Diagnostics for Tuberculosis. Global Demand and Market Potential. WHO, Geneva, Switzerland (2008).
  • Atkinson AJ, Colburn WA, DeGruttola VG et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
  • Mack U, Migliori GB, Sester M et al.; TBNET CLft. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur. Respir. J.33, 956–973 (2009).
  • Larsen MV, Sorensen IJ, Thomsen VO, Ravn P. Re-activation of bovine tuberculosis in a patient treated with infliximab. Eur. Respir. J.32, 229–231 (2008).
  • Lillebaek T, Bergstedt W, Tingskov PN et al. Risk of sensitization in healthy adults following repeated administration of rdESAT-6 skin test reagent by the Mantoux injection technique. Tuberculosis (Edinb.)89, 158–162 (2009).
  • van der Wel N, Hava D, Houben D et al.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell129, 1287–1298 (2007).
  • Winau F, Weber S, Sad S et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity24, 105–117 (2006).
  • Krutzik SR, Modlin RL. The role of Toll-like receptors in combating mycobacteria. Semin. Immunol.16, 35–41 (2004).
  • Flynn JL, Chan J. Immunology of tuberculosis. Ann. Rev. Immunol.19, 93–129 (2001).
  • Sharma SK, Mohan A, Sharma A, Mitra DK. Miliary tuberculosis: new insights into an old disease. Lancet Infect. Dis.5, 415–430 (2005).
  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Ann. Rev. Immunol.26, 677–704 (2008).
  • Kaufmann SHE, Parida SK. Tuberculosis in Africa: learning from pathogenesis for biomarker identification. Cell Host Microbe4, 219–228 (2008).
  • Kaufmann SHE. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol.1, 20–30 (2001).
  • Saunders BM, Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell. Biol.85, 103–111 (2007).
  • Di Liberto D, Locati M, Caccamo N et al. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J. Exp. Med.205(9), 2075–2084 (2008).
  • Hougardy JM, Verscheure V, Locht C, Mascart F. In vitro expansion of CD4+CD25highFOXP3+CD127low/- regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans. Microbes Infect.9, 1325–1332 (2007).
  • Scott-Browne JP, Shafiani S, Tucker-Heard G et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J. Exp. Med.204, 2159–2169 (2007).
  • Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJC, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA104, 19446–19451 (2007).
  • Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front. Biosci.13, 453–461 (2008).
  • Viola A, Luster AD. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol.48, 171–197 (2008).
  • Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol.25, 787–820 (2007).
  • Thelen M, Stein J. How chemokines invite leukocytes to dance. Nat. Immunol.9, 953–959 (2008).
  • Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol.9, 970–980 (2008).
  • Lande R, Giacomini E, Grassi T et al. IFN-αβ released by Mycobacterium tuberculosis-infected human dendritic cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. J. Immunol.170, 1174–1182 (2003).
  • Qu C, Edwards EW, Tacke F et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med.200, 1231–1241 (2004).
  • Chiu BC, Freeman CM, Stolberg VR et al. Cytokine–chemokine networks in experimental mycobacterial and schistosomal pulmonary granuloma formation. Am. J. Respir. Cell Mol. Biol.29, 106–116 (2003).
  • Jang S, Uzelac A, Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection. J. Leukoc. Biol.84, 1264–1270 (2008).
  • Jeyanathan M, Mu J, Kugathasan K et al. Airway delivery of soluble mycobacterial antigens restores protective mucosal immunity by single intramuscular plasmid DNA tuberculosis vaccination: role of proinflammatory signals in the lung. J. Immunol.181, 5618–5626 (2008).
  • Kaplan G, Luster AD, Hancock G, Cohn ZA. The expression of a γ interferon-induced protein (IP-10) in delayed immune responses in human skin. J. Exp. Med.166, 1098–1108 (1987).
  • Molesworth-Kenyon S, Mates A, Yin R, Strieter R, Oakes J, Lausch R. CXCR3, IP-10, and Mig are required for CD4+ T cell recruitment during the DTH response to HSV-1 yet are independent of the mechanism for viral clearance. Virology333, 1–9 (2005).
  • Steingart KR, Henry M, Laal S et al. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS Med.4, e202 (2007).
  • Bagheri K, Delirezh N, Moazzeni SM. PPD extract induces the maturation of human monocyte-derived dendritic cells. Immunopharmacol. Immunotoxicol.30, 91–104 (2008).
  • Harboe M. Antigens of PPD, old tuberculin, and autoclaved Mycobacterium bovis BCG studied by crossed immunoelectrophoresis. Am. Rev. Respir. Dis.124, 80–87 (1981).
  • Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test. Clin. Infect. Dis.17, 968–975 (1993).
  • Arend SM, Franken WP, Aggerbeck H et al. Double-blind randomized Phase I study comparing rdESAT-6 to tuberculin as skin test reagent in the diagnosis of tuberculosis infection. Tuberculosis (Edinb.)88, 249–261 (2008).
  • Davies MA, Connell T, Johannisen C et al. Detection of tuberculosis in HIV-infected children using an enzyme-linked immunospot assay. AIDS23, 961–969 (2009).
  • Ferrara G, Losi M, D’Amico R et al. Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study. Lancet367, 1328–1334 (2006).
  • Jones S, de Gijsel D, Wallach FR, Gurtman AC, Shi Q, Sacks H. Utility of QuantiFERON-TB Gold in-tube testing for latent TB infection in HIV-infected individuals. Int. J. Tuberc. Lung Dis.11, 1190–1195 (2007).
  • Karam F, Mbow F, Fletcher H et al. Sensitivity of IFN-γ release assay to detect latent tuberculosis infection is retained in HIV-infected patients but dependent on HIV/AIDS progression. PLoS ONE3, e1441 (2008).
  • Liebeschuetz S, Bamber S, Ewer K, Deeks J, Pathan AA, Lalvani A. Diagnosis of tuberculosis in South African children with a T-cell-based assay: a prospective cohort study. Lancet364, 2196–2203 (2004).
  • Luetkemeyer AF, Charlebois ED, Flores LL et al. Comparison of an interferon-γ release assay with tuberculin skin testing in HIV-infected individuals. Am. J. Respir. Crit. Care Med.175, 737–742 (2007).
  • Mandalakas AM, Hesseling AC, Chegou NN et al. High level of discordant IGRA results in HIV-infected adults and children. Int. J. Tuberc. Lung Dis.12, 417–423 (2008).
  • Rangaka MX, Wilkinson KA, Seldon R et al. Effect of HIV-1 infection on T-cell-based and skin test detection of tuberculosis infection. Am. J. Respir. Crit. Care Med.175, 514–520 (2007).
  • Richeldi L, Losi M, D’Amico R et al. Performance of tests for latent tuberculosis in different groups of immunocompromised patients. Chest doi: 10.1378/chest.08-2575 (Epub ahead of print) (2009).
  • Stephan C, Wolf T, Goetsch U et al. Comparing QuantiFERON-tuberculosis gold, T-SPOT tuberculosis and tuberculin skin test in HIV-infected individuals from a low prevalence tuberculosis country. AIDS22, 2471–2479 (2008).
  • Talati N, Seybold U, Humphrey B et al. Poor concordance between interferon-γ release assays and tuberculin skin tests in diagnosis of latent tuberculosis infection among HIV-infected individuals. BMC Infect. Dis.9, 15 (2009).
  • Pai M, Lewinsohn DM. interferon-γ assays for tuberculosis: is anergy the Achilles’ heel? Am. J. Respir. Crit. Care Med.172, 519–521 (2005).
  • Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev. Mol. Diagn.6, 423–432 (2006).
  • Pai M, O’Brien R. Tuberculosis diagnostics trials: do they lack methodological rigor? Expert Rev. Mol. Diagn.6(4), 509–514 (2006).
  • Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann. Intern. Med.149, 177–184 (2008).
  • Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet356, 1099–1104 (2000).
  • Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology144(Pt 11), 3195–3203 (1998).
  • Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection. J. Clin. Microbiol.42, 2379–2387 (2004).
  • Leyten EM, Lin MY, Franken KL et al. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect.8, 2052–2060 (2006).
  • Harada N, Higuchi K, Yoshiyama T et al. Comparison of the sensitivity and specificity of two whole blood interferon-γ assays for M. tuberculosis infection. J. Infect.56, 348–353 (2008).
  • Bakir M, Millington KA, Soysal A et al. Prognostic value of a T-cell-based, interferon-γ biomarker in children with tuberculosis contact. Ann. Intern. Med.149, 777–786 (2008).
  • Hill PC, Jackson-Sillah DJ, Fox A et al. Incidence of tuberculosis and the predictive value of ELISPOT and Mantoux tests in Gambian case contacts. PLoS ONE3, e1379 (2008).
  • Goletti D, Carrara S, Mayanja-Kizza H et al. Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect. Dis.8, 11 (2008).
  • Aabye MG, Ravn P, PrayGod G et al. The impact of HIV infection and CD4 cell count on the performance of an interferon γ release assay in patients with pulmonary tuberculosis. PLoS ONE4, e4220 (2009).
  • Brock I, Ruhwald M, Lundgren B, Westh H, Mathiesen LR, Ravn P. Latent tuberculosis in HIV positive, diagnosed by the M. tuberculosis specific interferon-γ test. Respir. Res.7, 56 (2006).
  • Luetkemeyer AF, Charlebois ED, Flores LL et al. Comparison of an interferon-γ release assay with tuberculin skin testing in HIV-infected individuals. Am. J. Respir. Crit. Care Med.175, 737–742 (2007).
  • Perkins MD, Small PM. Admitting defeat. Int. J. Tuberc. Lung Dis.10, 1 (2006).
  • Small PM, Perkins MD. More rigour needed in trials of new diagnostic agents for tuberculosis. Lancet356, 1048–1049 (2000).
  • Soborg B, Ruhwald M, Hetland M et al. Comparison of screening procedures for M. tuberculosis infection among patients with inflammatory diseases. J. Rheumatol. (In press) (2009).
  • Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann. Intern. Med.146, 340–354 (2007).
  • Ponce de LD, Cevedo-Vasquez E, Alvizuri S et al. Comparison of an interferon-γ assay with tuberculin skin testing for detection of tuberculosis (TB) infection in patients with rheumatoid arthritis in a TB-endemic population. J. Rheumatol.35, 776–781 (2008).
  • Pai M, Joshi R, Dogra S, Zwerling AA et al. T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India. Int. J. Tuberc. Lung Dis.13, 84–92 (2009).
  • Harada N, Higuchi K, Sekiya Y, Rothel J, Kitoh T, Mori T. Basic characteristics of a novel diagnostic method (QuantiFERON TB-2G) for latent tuberculosis infection with the use of Mycobacterium tuberculosis-specific antigens, ESAT-6 and CFP-10. Kekkaku79, 725–735 (2004).
  • Schuck SD, Mueller H, Kunitz F et al. Identification of T-cell antigens specific for latent Mycobacterium tuberculosis infection. PLoS ONE4, e5590 (2009).
  • KawamuraM. tuberculosis screening of contacts and HCWs in San Francisco. Presented at: 2nd Global Symposium on IGRAs. Duborvnik, Croatia, 29 May–1 June, 2009.
  • Doherty TM, Demissie A, Olobo J et al. Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J. Clin. Microbiol.40, 704–706 (2002).
  • Hill PC, Jackson-Sillah DJ, Fox A et al. Incidence of tuberculosis and the predictive value of ELISPOT and Mantoux tests in Gambian case contacts. PLoS ONE3(1), e1379 (2008).
  • Diel R, Loddenkemper R, Meywald-Walter K, Niemann S, Nienhaus A. Predictive value of a whole blood IFN-γ assay for the development of active tuberculosis disease after recent infection with Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med.177, 1164–1170 (2008).
  • Aichelburg MC, Rieger A, Breitenecker F et al. Detection and prediction of active tuberculosis disease by a whole-blood interferon-γ release assay in HIV-1-infected individuals. Clin. Infect. Dis.48, 954–962 (2009).
  • Andersen P, Doherty TM, Pai M, Weldingh K. The prognosis of latent tuberculosis: can disease be predicted? Trends Mol. Med.13, 175–182 (2007).
  • Higuchi K, Harada N, Fukazawa K, Mori T. Relationship between whole-blood interferon-γ responses and the risk of active tuberculosis. Tuberculosis (Edinb.)88, 244–248 (2008).
  • Jacobsen M, Mattow J, Repsilber D, Kaufmann SHE. Novel strategies to identify biomarkers in tuberculosis. Biol. Chem.389, 487–495 (2008).
  • Wallis RS, Doherty TM, Onyebujoh P et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect. Dis.9, 162–172 (2009).
  • Doherty M, Wallis RS, Zumla A; WHO-Tropical Disease Research/European Commission joint expert consultation group. Biomarkers for tuberculosis disease status and diagnosis. Curr. Opin. Pulmon. Med.15(3), 181–187 (2009).
  • Walzl G, Ronacher K, Djoba Siawaya JF, Dockrell HM. Biomarkers for TB treatment response: challenges and future strategies. J. Infect.57, 103–109 (2008).
  • Pai M, Riley LW, Colford JM Jr. interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis.4, 761–776 (2004).
  • Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part I. Latent tuberculosis. Expert Rev. Mol. Diagn.6(3), 413–422 (2006).
  • Petrovsky N, Harrison LC. Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J. Immunol.158, 5163–5168 (1997).
  • Arend SM, Thijsen SFT, Leyten EMS et al. Comparison of two interferon-γ assays and tuberculin skin test for tracing tuberculosis contacts. Am. J. Respir. Crit. Care Med.175, 618–627 (2007).
  • Leyten EMS, Arend SM, Prins C, Cobelens FGJ, Ottenhoff THM, van Dissel JT. Discrepancy between Mycobacterium tuberculosis-specific γ interferon release assays using short and prolonged in vitro incubation. Clin. Vaccine Immunol.14, 880–885 (2007).
  • Munk ME, Arend SM, Brock I, Ottenhoff THM, Andersen P. Use of ESAT-6 and CFP-10 antigens for diagnosis of extrapulmonary tuberculosis. J. Infect. Dis.183, 175–176 (2001).
  • Ravn P, Demissie A, Eguale T et al. Human T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis. J. Infect. Dis.179, 637–645 (1999).
  • Aagaard C, Brock I, Olsen A, Ottenhoff THM, Weldingh K, Andersen P. Mapping immune reactivity toward Rv2653 and Rv2654: two novel low-molecular-mass antigens found specifically in the Mycobacterium tuberculosis complex. J. Infect. Dis.189, 812–819 (2004).
  • Savolainen L, Pusa L, Kim HJ, Sillanpää H, Seppälä I, Tuuminen T. Pilot study of diagnostic potential of the Mycobacterium tuberculosis recombinant HBHA protein in a vaccinated population in Finland. PLoS ONE3, e3272 (2008).
  • Feske M, Nudelman RJ, Medina M et al. Enhancement of human antigen-specific memory T-cell responses by interleukin-7 may improve accuracy in diagnosing tuberculosis. Clin. Vaccine Immunol.15, 1616–1622 (2008).
  • Denis M, Wedlock DN, McCarthy AR et al. Enhancement of the sensitivity of the whole-blood γ interferon assay for diagnosis of Mycobacterium bovis infections in cattle. Clin. Vaccine Immunol.14, 1483–1489 (2007).
  • Li L, Lao SH, Wu CY. Increased frequency of CD4+CD25high Treg cells inhibit BCG-specific induction of IFN-γ by CD4+ T cells from TB patients. Tuberculosis87, 526–534 (2007).
  • Jennes W, Kestens L, Nixon DF, Shacklett BL. Enhanced ELISPOT detection of antigen-specific T cell responses from cryopreserved specimens with addition of both IL-7 and IL-15– the Amplispot assay. J. Immunol. Method270, 99–108 (2002).
  • Calarota SA, Otero M, Hermanstayne K et al. Use of interleukin 15 to enhance interferon-γ production by antigen-specific stimulated lymphocytes from rhesus macaques. J. Immunol. Method.279, 55–67 (2003).
  • Kuerten S, Schlingmann TR, Rajasalu T, Angelov DN, Lehmann PV, Tary-Lehmann M. Lack of disease specificity limits the usefulness of in vitro costimulation in HIV- and HCV-infected patients. Clin. Dev. Immunol.2008, 590941 (2008).
  • Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MO. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur. J. Immunol.39, 723–729 (2009).
  • Ulrichs T, Munk ME, Mollenkopf H et al. Differential T cell responses to Mycobacterium tuberculosis ESAT6 in tuberculosis patients and healthy donors. Eur. J. Immunol.28, 3949–3958 (1998).
  • Millington KA, Innes JA, Hackforth S et al. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol.178, 5217–5226 (2007).
  • Hughes AJ, Hutchinson P, Gooding T, Freezer NJ, Holdsworth SR, Johnson PD. Diagnosis of Mycobacterium tuberculosis infection using ESAT-6 and intracellular cytokine cytometry. Clin. Exp. Immunol.142, 132–139 (2005).
  • Ruhwald M, Bjerregaard-Andersen M, Rabna P, Kofoed K, Eugen-Olsen J, Ravn P. IP-10/CXCL10 release is induced by incubation of whole blood from tuberculosis patients with ESAT-6, CFP10 and TB7.7. Microbes. Infect.9, 806–812 (2007).
  • Ruhwald M, Petersen J, Kofoed K et al. Improving T-cell assays for the diagnosis of latent TB infection: potential of a diagnostic test based on IP-10. PLoS ONE3, e2858 (2008).
  • Brice GT, Graber NL, Hoffman SL, Doolan DL. Expression of the chemokine MIG is a sensitive and predictive marker for antigen-specific, genetically restricted IFN-γ production and IFN-γ-secreting cells. J. Immunol. Method.257, 55–69 (2001).
  • Abramo C, Meijgaarden KE, Garcia D et al. Monokine induced by interferon g and IFN-γ response to a fusion protein of Mycobacterium tuberculosis ESAT-6 and CFP-10 in Brazilian tuberculosis patients. Microbes Infect.8, 45–51 (2006).
  • Fitzgerald-Bocarsly P, Feng D. The role of type I interferon production by dendritic cells in host defense. Biochimie89, 843–855 (2007).
  • Ho HH, Ivashkiv LB. Role of STAT3 in type I interferon responses: negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem.281, 14111–14118 (2006).
  • Petrucci R, Abu AN, Gurgel RQ et al. Interferon γ, interferon-γ-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection. Pediatr. Infect. Dis. J.27, 1073–1077 (2008).
  • Ruhwald M, Bjerregaard-Andersen M, Rabna P, Eugen-Olsen J, Ravn P. IP-10, MCP-1, MCP-2, MCP-3, and IL-1RA hold promise as biomarkers for infection with M. tuberculosis in a whole blood based T-cell assay. BMC Res. Notes2, 19 (2009).
  • Whittaker E, Gordon A, Kampmann B. Is IP-10 a better biomarker for active and latent tuberculosis in children than IFNγ? PLoS ONE3, e3901 (2008).
  • Zhou X-H, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. John Wiley & Sons, NY, USA (2002).
  • Ruhwald M, Bodmer T, Maier C et al.; on behalf of TBNET. Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of TB. Eur. Respir. J.32(6), 1428–1430 (2008).
  • Ruhwald M. Improving T-cell assays for the diagnosis of active and latent TB infection using IP-10. Presented at: 2nd Global Symposium on IGRAs. Duborvnik, Croatia, 29 May–1 June, 2009.
  • Lighter J, Rigaud M, Huie M, Peng CH, Pollack H. Chemokine IP-10: an adjunct marker for latent tuberculosis infection in children. Int. J. Tuberc. Lung Dis.13, 731–736 (2009).
  • Demissie A, Leyten EM, Abebe M et al. Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin. Vaccine Immunol.13, 179–186 (2006).
  • Hougardy JM, Schepers K, Place S et al. Heparin-binding-hemagglutinin-induced IFN-γ release as a diagnostic tool for latent tuberculosis. PLoS ONE2, e926 (2007).
  • Siawaya JF, Bapela NB, Ronacher K, Beyers N, van Helden P, Walzl G. Differential expression of interleukin-4 (IL-4) and IL-4 δ 2 mRNA, but not transforming growth factor β (TGF-β), TGF-β RII, Foxp3, γ interferon, T-bet, or GATA-3 mRNA, in patients with fast and slow responses to antituberculosis treatment. Clin. Vaccine Immunol.15, 1165–1170 (2008).
  • Wassie L, Demissie A, Aseffa A et al.Ex vivo cytokine mRNA levels correlate with changing clinical status of ethiopian TB patients and their contacts over time. PLoS ONE3, e1522 (2008).
  • Wu B, Huang C, Kato-Maeda M et al. Messenger RNA expression of IL-8, FOXP3, and IL-12β differentiates latent tuberculosis infection from disease. J. Immunol.178, 3688–3694 (2007).
  • Diel R, Nienhaus A, Lange C, Meywald-Walter K, Forssbohm M, Schaberg T. Tuberculosis contact investigation with a new, specific blood test in a low-incidence population containing a high proportion of BCG-vaccinated persons. Respir. Res.7, 77 (2006).
  • Kobashi Y, Mouri K, Yagi S, Obase Y, Miyashita N, Oka M. Transitional changes in T-cell responses to Mycobacterium tuberculosis-specific antigens during treatment. J. Infect.58, 197–204 (2009).
  • Higuchi K, Harada N, Mori T. interferon-γ responses after isoniazid chemotherapy for latent tuberculosis. Respirology13, 468–472 (2008).
  • Herrmann JL, Belloy M, Porcher R et al. Temporal dynamics of interferon g responses in children evaluated for tuberculosis. PLoS ONE4, e4130 (2009).
  • Djoba Siawaya JF, Bapela NB, Ronacher K et al. Immune parameters as markers of tuberculosis extent of disease and early prediction of anti-tuberculosis chemotherapy response. J. Infect.56, 340–347 (2008).
  • Djoba Siawaya JF, Ruhwald M, Eugen-Olsen J, Walzl G. Correlates for disease progression and prognosis during concurrent HIV/TB infection. Int. J. Infect. Dis.11, 289–299 (2007).
  • Eugen-Olsen J, Gustafson P, Sidenius N et al. The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: a community study from Guinea–Bissau. Int. J. Tuberc. Lung Dis.6, 686–692 (2002).
  • Immanuel C, Swamy R, Kannapiran M et al. Neopterin as a marker for cell-mediated immunity in patients with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.1, 175–180 (1997).
  • Tozkoparan E, Deniz O, Cakir E et al. The diagnostic values of serum, pleural fluid and urine neopterin measurements in tuberculous pleurisy. Int. J. Tuberc. Lung Dis.9, 1040–1045 (2005).
  • Azzurri A, Sow OY, Amedei A et al. IFN-γ-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect.7, 1–8 (2005).
  • Djoba Siawaya JF, Beyers N, van Helden P, Walzl G. Differential cytokine secretion and early treatment response in patients with pulmonary tuberculosis. Clin. Exp. Immunol.156, 69–77 (2009).

Patent

  • Patent. Rothel JS, Wild S, Cosgriff A. Diagnostic assay for measuring a cell mediated immune response. PCT/AU2003/001464[WO/2004/042396]. 2004. 6 November, 2003.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.