39
Views
11
CrossRef citations to date
0
Altmetric
Review

Reactive species and pulmonary edema

, , , &
Pages 487-496 | Published online: 09 Jan 2014

References

  • Lehavi O, Leiba A, Dahan Y et al. Lessons learned from chlorine intoxications in swimming pools: the challenge of pediatric mass toxicological events. Prehosp. Disaster Med.23, 90–95 (2008).
  • Leustik M, Doran S, Bracher A et al. Mitigation of chlorine-induced lung injury by low-molecular-weight antioxidants. Am. J. Physiol. Lung Cell Mol. Physiol.295, L733–L743 (2008).
  • Taylor G, Miller H, Shulman H, DeLacy J, Maggisano R. Controversies in the management of pulmonary contusion. Can. J. Surg.25, 167–170 (1982).
  • Reske A, Seiwerts M, Reske A, Gottschaldt U, Schreiter D. Early recovery from posttraumatic acute respiratory distress syndrome. Clin. Physiol. Funct. Imaging26, 376–379 (2006).
  • Tariq S, Sadaf T. Images in clinical medicine. Reexpansion pulmonary edema after treatment of pneumothorax. N. Engl. J. Med.354, 2046 (2006).
  • Sohara Y. Reexpansion pulmonary edema. Ann. Thorac. Cardiovasc. Surg.14, 205–209 (2009).
  • Conen A, Joos L, Bingisser R. Ipsilateral reexpansion pulmonary edema after drainage of a spontaneous pneumothorax: a case report. J. Med. Case Reports1, 107 (2007).
  • Akindipe O, Fernandez-Bussy S, Staples E, Baz M. Late unilateral pulmonary edema in single lung transplant recipients. J. Heart Lung Transplant.27, 1055–1058 (2008).
  • Triulzi D. Transfusion-related acute lung injury: current concepts for the clinician. Anesth. Analg.108, 770–776 (2009).
  • Biswal S, Remick D. Sepsis: redox mechanisms and therapeutic opportunities. Antioxid. Redox Signal.9, 1959–1961 (2007).
  • Bisinotto F, Cardoso RP, Abud T. Acute pulmonary edema associated with obstruction of the airways. Case report. Rev. Bras. Anestesiol.58, 165–171 (2008).
  • Bärtsch P, Mairbäurl H, Maggiorini M, Swenson E. Physiological aspects of high-altitude pulmonary edema. J. Appl. Physiol.98, 1101–1110 (2005).
  • Hopkins S, Garg J, Bolar D, Balouch J, Levin D. Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am. J. Respir. Crit. Care Med.171, 83–87 (2005).
  • Knowles M, Carson J, Collier A, Gatzy J, Boucher R. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am. Rev. Respir. Dis.124, 484–490 (1981).
  • Sartori C, Allemann Y, Duplain H et al. Salmeterol for the prevention of high-altitude pulmonary edema. N. Engl. J. Med.346, 1631–1636 (2002).
  • Sartori C, Duplain H, Lepori M et al. High altitude impairs nasal transepithelial sodium transport in HAPE-prone subjects. Eur. Respir. J.23, 916–920 (2004).
  • Sartori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learning from high-altitude pulmonary edema. Respir. Physiol. Neurobiol.159, 338–349 (2007).
  • Iles K, Dickinson D, Watanabe N, Iwamoto T, Forman H. AP-1 activation through endogenous H2O2 generation by alveolar macrophages. Free Radic. Biol. Med.32, 1304–1313 (2002).
  • Iles K, Forman H. Macrophage signaling and respiratory burst. Immunol. Res.26, 95–105 (2002).
  • Parola M, Robino G, Marra F et al. HNE interacts with JNK isoforms in human hepatice stellate cells. J. Clin. Invest.102, 1942–1950 (1998).
  • Punjabi C, Laskin J, Pendino K, Goller N, Durham S, Laskin D. Production of nitric oxide by rat type II pneumocytes: increased expression of inducible nitric oxide synthase following inhalation of a pulmonary irritant. Am. J. Respir. Cell Mol. Biol.11, 165–172 (1994).
  • Haddad I, Hu P, Galliani C, Beckman J, Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest.94, 2407–2413 (1994).
  • Kobayashi A, Hashimoto S, Kooguchi K et al. Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. Chest113, 1632–1639 (1998).
  • Sittipunt C, Steinberg K, Ruzinski J et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.163, 503–510 (2001).
  • Ignarro L. Haem-dependent activation of cytosolic guanylate cyclase by nitric oxide: a widespread signal transduction mechanism. Biochem. Soc. Trans.20, 465–469 (1992).
  • Stamler J, Simon D, Jaraki O et al.S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc. Natl Acad. Sci. USA89, 8087–8091 (2009).
  • Guo C, Atochina-Vasserman E, Abramova E et al.S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol.6, e266 (2008).
  • Marshall H, Potts E, Kelleher Z, Stamler J, Foster W, Auten R. Protection from LPS-induced lung injury by augmentation of airway S-nitrosothiols. Am. J. Respir. Crit. Care Med.180(1), 11–18 (2009).
  • Beckman J, Beckman T, Chen J, Marshall P, Freeman B. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA87, 1620–1624 (1990).
  • Hu P, Ischiropoulos H, Beckman J, Matalon S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am. J. Physiol.266, L628–L634 (1994).
  • van der Vliet A, Hoen P, Wong P, Bast A, Cross C. Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J. Biol. Chem.273, 30255–30262 (1998).
  • Hickman-Davis J, McNicholas-Bevensee C, Davis I et al. Reactive species mediate inhibition of alveolar type II sodium transport during mycoplasma infection. Am. J. Respir. Crit. Care Med.173, 334–344 (2006).
  • Lazrak A, Iles K, Liu G, Noah D, Noah J, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. (2009) (Epub ahead of print).
  • Wang H, Zentner M, Deng H et al. Oxidative stress disrupts glucocorticoid hormone-dependent transcription of the amiloride-sensitive epithelial sodium channel α-subunit in lung epithelial cells through ERK-dependent and thioredoxin-sensitive pathways. J. Biol. Chem.24, 8600–8609 (2000).
  • Matthay M, Wiener-Kronish J. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am. Rev. Respir. Dis.142, 1250–1257 (1990).
  • Ware L, Matthay M. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.163, 1376–1383 (2001).
  • Yue G, Matalon S. Mechanisms and sequelae of increased alveolar fluid clearance in hyperoxic rats. Am. J. Physiol.272, L407–L412 (1997).
  • Suzuki S, Zuege D, Berthiaume Y. Sodium-independent modulation of Na+-K+-ATPase activity by β-adrenergic agonist in alveolar type II cells. Am. J. Physiol.268, L983–L990, (1995).
  • Sakuma T, Okaniwa G, Nakada T, Nishimura T, Fujimura S, Matthay M. Alveolar fluid clearance in the resected human lung. Am. J. Respir. Crit. Care Med.150, 305–310 (1994).
  • Pittet J, Lu L, Morris D et al. Reactive nitrogen species inhibit alveolar epithelial fluid transport after hemorrhagic shock in rats. J. Immunol.166, 6301–6310 (2001).
  • Zhu S, Ware L, Geiser T, Matthay M, Matalon S. Increased levels of nitrate and surfactant protein a nitration in the pulmonary edema fluid of patients with acute lung injury. Am. J. Respir. Crit. Care Med.163, 166–172 (2001).
  • DuVall M, Zhu S, Fuller C, Matalon S. Peroxynitrite inhibits amiloride-sensitive Na+ currents in Xenopus oocytes expressing αβγ-rENaC. Am. J. Physiol.274, C1417–C1423 (1998).
  • Matalon S, Beckman J, Duffey M, Freeman B. Oxidant inhibition of epithelial active sodium transport. Free Radic. Biol. Med.6, 557–564 (1989).
  • Vadász I, Morty R, Kohstall M et al. Oleic acid inhibits alveolar fluid reabsorption: a role in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.171, 469–479 (2005).
  • Vadász I, Morty R, Olschewski A et al. Thrombin impairs alveolar fluid clearance by promoting endocytosis of Na+,K+-ATPase. Am. J. Respir. Cell Mol. Biol.33, 343–354 (2005).
  • Yucel O, Kunak Z, Macit E et al. Protective efficiacy of taurine against pulmonary edema progression: experimental study. J. Cardiothorac. Surg.3, 57 (2008).
  • Sivrikoz M, Tunçözgür B, Cekmen M et al. The role of tissue reperfusion in the reexpansion injury of the lungs. Eur. J. Cardiothorac. Surg.22, 721–727 (2002).
  • Tibor B, Zsolt R. High altitude and free radicals. J. Sports Sci. Med.3, 64–69 (2009).
  • Sarada S, Himadri P, Mishra C, Geetali P, Ram M, Ilavazhagan G. Role of oxidative stress and NFκB in hypoxia-induced pulmonary edema. Exp. Biol. Med. (Maywood)233, 1088–1098 (2008).
  • Dickinson DA, Liu RM, Iles KE, Forman HF. Signaling for the synthesis of glutathione. In: Free Radicals in Chemistry, Biology and Medicine. Yoshikawa T (Ed.). OICA International, London, UK (2000).
  • Iles K, Liu R. Mechanisms of glutamate cysteine ligase (GCL) induction by 4-hydroxynonenal. J. Free Radic. Biol. Med.38, 547–556 (2005).
  • Dickinson DA, Forman HJ. Glutathione in defense and signaling: lessons from a small thiol. Ann. NY Acad. Sci.973, 488–504 (2002).
  • Wild AC, Gipp JJ, Mulcahy T. Overlapping antioxidant response element and PMA response element sequences mediate basal and β-naphthoflavone-induced expression of the human γ-glutamylcysteine synthetase catalytic subunit gene. Biochem. J.332, 373–381 (1998).
  • Fu Z, Jiang P, Ren Y et al. Changes of antioxidative capacity and endothelial function before and after treatment among patients with high altitude pulmonary edema. Zhonghua Jie He He Hu Xi Za Zhi25, 33–35 (2002).
  • Vats P, Singh V, Singh S, Singh S. Glutathione metabolism under high-altitude stress and effect of antioxidant supplementation. Aviat. Space Environ. Med.79, 1106–1111 (2008).
  • Sciuto A, Cascio M, Moran T, Forster J. The fate of antioxidant enzymes in bronchoalveolar lavage fluid over 7 days in mice with acute lung injury. Inhal. Toxicol.15, 675–685 (2003).
  • Dickinson D, Iles K, Watanabe N et al. 4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic. Biol. Med.33, 974–987 (2002).
  • Dickinson D, Iles K, Zhang H, Blank V, Forman H. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J.17, 473–475 (2003).
  • Guidot D, Modelska K, Lois M et al. Ethanol ingestion via glutathione depletion impairs alveolar epithelial barrier function in rats. Am. J. Physiol. Lung Cell Mol. Physiol.279, L127–L135 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.