76
Views
3
CrossRef citations to date
0
Altmetric
Review

Role of CD8+ T-cell immunity in influenza infection: potential use in future vaccine development

, , , , &
Pages 523-537 | Published online: 09 Jan 2014

References

  • Nichol KL, Treanor JJ. Vaccines for seasonal and pandemic influenza. J. Infect. Dis.194(Suppl. 2), S111–S118 (2006).
  • Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg. Infect. Dis.5(5), 659–671 (1999).
  • Webby RJ, Webster RG, Richt JA. Influenza viruses in animal wildlife populations. Curr. Top. Microbiol. Immunol.315, 67–83 (2007).
  • Schild GC, Newman RW, Webster RG, Major D, Hinshaw VS. Antigenic analysis of influenza A virus surface antigens: considerations for the nomenclature of influenza virus. Brief review. Arch. Virol.63(3–4), 171–184 (1980).
  • Ito T, Kawaoka Y. Avian influenza. In: Textbook of Influenza. Nicholson KG, Webster RG, Hay AJ (Eds.). Blackwell Science, Oxford, UK, 126–136 (1998).
  • Smith DJ, Lapedes AS, de Jong JC et al. Mapping the antigenic and genetic evolution of influenza virus. Science305(5682), 371–376 (2004).
  • Rott R, Klenk HD, Nagai Y, Tashiro M. Influenza viruses, cell enzymes, and pathogenicity. Am. J. Respir. Crit. Care Med.152(4 Pt 2), S16–S19 (1995).
  • Lamb RA, Krug RM. Orthomyxoviradae: influenza viruses. In: Fields Virology. Fields BN, Knipe DM, Howley PM (Eds). Lippincott-Raven, PA, USA, 1359–1362 (1996).
  • Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology127(2), 361–373 (1983).
  • Connor RJ, Kawaoka Y, Webster RG, Paulson JC. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology205(1), 17–23 (1994).
  • Rogers GN, D’Souza BL. Receptor binding properties of human and animal H1 influenza virus isolates. Virology173(1), 317–322 (1989).
  • Palese P, Tobita K, Ueda M, Compans RW. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology61(2), 397–410 (1974).
  • Taubenberger JK, Reid AH, Janczewski TA, Fanning TG. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos. Trans. R Soc. Lond. B Biol. Sci.356(1416), 1829–1839 (2001).
  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev.56(1), 152–179 (1992).
  • Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol.63(11), 4603–4608 (1989).
  • Itoh Y, Shinya K, Kiso Met al.In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature460(7258), 1021–1025 (2009).
  • Maines TR, Jayaraman A, Belser JA et al. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science325(5939), 484–487 (2009).
  • Peiris JS, Poon LL, Guan Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J. Clin. Virol.45(3), 169–173 (2009).
  • Hatta M, Kawaoka Y. The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol.10(7), 340–344 (2002).
  • Webby RJ, Webster RG. Are we ready for pandemic influenza? Science302(5650), 1519–1522 (2003).
  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature440(7083), 435–436 (2006).
  • Yamada S, Suzuki Y, Suzuki T et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature444(7117), 378–382 (2006).
  • Tumpey TM, Basler CF, Aguilar PV et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science310(5745), 77–80 (2005).
  • Chen H, Deng G, Li Z et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc. Natl Acad. Sci. USA101(28), 10452–10457 (2004).
  • Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature437(7060), 889–893 (2005).
  • Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA. Global patterns of influenza a virus in wild birds. Science312(5772), 384–388 (2006).
  • El Sahly HM, Keitel WA. Pandemic H5N1 influenza vaccine development: an update. Expert Rev. Vaccines7(2), 241–247 (2008).
  • Leroux-Roels I, Borkowski A, Vanwolleghem T et al. Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial. Lancet370(9587), 580–589 (2007).
  • Nolan TM, Richmond PC, Skeljo MV et al. Phase I and II randomised trials of the safety and immunogenicity of a prototype adjuvanted inactivated split-virus influenza A (H5N1) vaccine in healthy adults. Vaccine26(33), 4160–4167 (2008).
  • Wu J, Fang HH, Chen JT et al. Immunogenicity, safety, and cross-reactivity of an inactivated, adjuvanted, prototype pandemic influenza (H5N1) vaccine: a Phase II, double-blind, randomized trial. Clin. Infect. Dis.48(8), 1087–1095 (2009).
  • Network WHOGIPS. Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis.11(10), 1515–1521 (2005).
  • Yu X, Tsibane T, McGraw PA et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature455(7212), 532–536 (2008).
  • Gerhard W. The role of the antibody response in influenza virus infection. Curr. Top. Microbiol. Immunol.260, 171–190 (2001).
  • Wiley DC, Wilson IA, Skehel JJ. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature289(5796), 373–378 (1981).
  • Palese P. Making better influenza virus vaccines? Emerg. Infect. Dis.12(1), 61–65 (2006).
  • Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine25(39–40), 6852–6862 (2007).
  • Skowronski DM, Masaro C, Kwindt TL et al. Estimating vaccine effectiveness against laboratory-confirmed influenza using a sentinel physician network: results from the 2005–2006 season of dual A and B vaccine mismatch in Canada. Vaccine25(15), 2842–2851 (2007).
  • Webster RG. Immunity to influenza in the elderly. Vaccine18(16), 1686–1689 (2000).
  • CDC. Assessment of the effectiveness of the 2003–04 influenza vaccine among children and adults-Colorado, 2003. Morb. Mortal. Wkly Rep.53, 707–710 (2004).
  • Jin H, Zhou H, Liu H et al. Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. Virology336(1), 113–119 (2005).
  • Christensen JP, Doherty PC, Branum KC, Riberdy JM. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8+ T-cell memory. J. Virol.74(24), 11690–11696 (2000).
  • Furuse Y, Suzuki A, Kamigaki T, Oshitani H. Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis. Virol. J.6, 67 (2009).
  • Doherty PC, Kelso A. Toward a broadly protective influenza vaccine. J. Clin. Invest.118(10), 3273–3275 (2008).
  • Thomas PG, Keating R, Hulse-Post DJ, Doherty PC. Cell-mediated protection in influenza infection. Emerg. Infect. Dis.12(1), 48–54 (2006).
  • Belz GT, Smith CM, Kleinert L et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA101(23), 8670–8675 (2004).
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001).
  • Jenkins MR, Mintern J, La Gruta NL, Kedzierska K, Doherty PC, Turner SJ. Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8+ T cells. J. Immunol.181(6), 3818–3822 (2008).
  • Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol.2(5), 415–422 (2001).
  • Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell111(6), 837–851 (2002).
  • van Stipdonk MJ, Hardenberg G, Bijker MS et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol.4(4), 361–365 (2003).
  • van Stipdonk MJ, Lemmens EE, Schoenberger SP. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol.2(5), 423–429 (2001).
  • Gett AV, Hodgkin PD. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA95(16), 9488–9493 (1998).
  • Lawrence CW, Braciale TJ. Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J. Immunol.173(2), 1209–1218 (2004).
  • Marshall DR, Turner SJ, Belz GT et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA98(11), 6313–6318 (2001).
  • Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature248(450), 701–702 (1974).
  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev.207, 145–157 (2005).
  • Wherry EJ, Teichgraber V, Becker TC et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4(3), 225–234 (2003).
  • Bachmann MF, Gallimore A, Linkert S et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J. Exp. Med.189(10), 1521–1530 (1999).
  • Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity8(6), 683–691 (1998).
  • Harrington LE, Galvan M, Baum LG, Altman JD, Ahmed R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med.191(7), 1241–1246 (2000).
  • Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT. Accelerated CD8+ T-cell memory and prime–boost response after dendritic-cell vaccination. Nat. Med.11(7), 748–756 (2005).
  • Chang JT, Palanivel VR, Kinjyo I et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science315(5819), 1687–1691 (2007).
  • Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity27(3), 393–405 (2007).
  • Kedzierska K, Stambas J, Jenkins MR, Keating R, Turner SJ, Doherty PC. Location rather than CD62L phenotype is critical in the early establishment of influenza-specific CD8+ T cell memory. Proc. Natl Acad. Sci. USA104(23), 9782–9787 (2007).
  • Kedzierska K, Venturi V, Field K, Davenport MP, Turner SJ, Doherty PC. Early establishment of diverse T cell receptor profiles for influenza-specific CD8+CD62Lhi memory T cells. Proc. Natl Acad. Sci. USA103(24), 9184–9189 (2006).
  • Bannard O, Kraman M, Fearon DT. Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science323(5913), 505–509 (2009).
  • Teixeiro E, Daniels MA, Hamilton SE et al. Different T cell receptor signals determine CD8+ memory versus effector development. Science323(5913), 502–505 (2009).
  • Reiner SL, Sallusto F, Lanzavecchia A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science317(5838), 622–625 (2007).
  • Stemberger C, Huster KM, Koffler M et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity27(6), 985–997 (2007).
  • Prlic M, Williams MA, Bevan MJ. Requirements for CD8 T-cell priming, memory generation and maintenance. Curr. Opin. Immunol.19(3), 315–319 (2007).
  • Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature441(7095), 890–893 (2006).
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393(6684), 478–480 (1998).
  • Kilbourne ED. Future influenza vaccines and the use of genetic recombinants. Bull. World Health Organ.41(3), 643–645 (1969).
  • Chen W, Bennink JR, Morton PA, Yewdell JW. Mice deficient in perforin, CD4+ T cells, or CD28-mediated signaling maintain the typical immunodominance hierarchies of CD8+ T-cell responses to influenza virus. J. Virol.76(20), 10332–10337 (2002).
  • Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell44(6), 959–968 (1986).
  • Belz GT, Xie W, Altman JD, Doherty PC. A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8+ T-cell response is much less apparent following secondary challenge. J. Virol.74(8), 3486–3493 (2000).
  • Belz GT, Xie W, Doherty PC. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J. Immunol.166(7), 4627–4633 (2001).
  • Chen W, Calvo PA, Malide D et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med.7(12), 1306–1312 (2001).
  • Vitiello A, Yuan L, Chesnut RW et al. Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. J. Immunol.157(12), 5555–5562 (1996).
  • Eichelberger M, Allan W, Zijlstra M, Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J. Exp. Med.174(4), 875–880 (1991).
  • Graham MB, Braciale TJ. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J. Exp. Med.186(12), 2063–2068 (1997).
  • Cerwenka A, Morgan TM, Dutton RW. Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J. Immunol.163(10), 5535–5543 (1999).
  • Cerwenka A, Morgan TM, Harmsen AG, Dutton RW. Migration kinetics and final destination of type 1 and type 2 CD8 effector cells predict protection against pulmonary virus infection. J. Exp. Med.189(2), 423–434 (1999).
  • Webby RJ, Andreansky S, Stambas J et al. Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc. Natl Acad. Sci. USA100(12), 7235–7240 (2003).
  • Peters PJ, Borst J, Oorschot V et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med.173(5), 1099–1109 (1991).
  • Smyth MJ, Kelly JM, Sutton VR et al. Unlocking the secrets of cytotoxic granule proteins. J. Leukoc. Biol.70(1), 18–29 (2001).
  • Topham DJ, Tripp RA, Doherty PC. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol.159(11), 5197–5200 (1997).
  • Mullbacher A, Waring P, Tha Hla R et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc. Natl Acad. Sci. USA96(24), 13950–13955 (1999).
  • Jenkins MR, Trapani JA, Doherty PC, Turner SJ. Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB-/- mice. Viral Immunol.21(3), 341–346 (2008).
  • Jenkins MR, Kedzierska K, Doherty PC, Turner SJ. Heterogeneity of effector phenotype for acute phase and memory influenza A virus-specific CTL. J. Immunol.179(1), 64–70 (2007).
  • Mintern JD, Guillonneau C, Carbone FR, Doherty PC, Turner SJ. Cutting edge: tissue-resident memory CTL down-regulate cytolytic molecule expression following virus clearance. J. Immunol.179(11), 7220–7224 (2007).
  • Jones CM, Cose SC, Coles RM et al. Herpes simplex virus type 1-specific cytotoxic T-lymphocyte arming occurs within lymph nodes draining the site of cutaneous infection. J. Virol.74(5), 2414–2419 (2000).
  • Johnson BJ, Costelloe EO, Fitzpatrick DR et al. Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc. Natl Acad. Sci. USA100(5), 2657–2662 (2003).
  • La Gruta NL, Turner SJ, Doherty PC. Hierarchies in cytokine expression profiles for acute and resolving influenza virus-specific CD8+ T cell responses: correlation of cytokine profile and TCR avidity. J. Immunol.172(9), 5553–5560 (2004).
  • Slifka MK, Rodriguez F, Whitton JL. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature401(6748), 76–79 (1999).
  • La Gruta NL, Thomas PG, Webb AI et al. Epitope-specific TCRb repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. Proc. Natl Acad. Sci. USA105(6), 2034–2039 (2008).
  • Flynn KJ, Riberdy JM, Christensen JP, Altman JD, Doherty PC. In vivo proliferation of naive and memory influenza-specific CD8+ T cells. Proc. Natl Acad. Sci. USA96(15), 8597–8602 (1999).
  • Kohlmeier JE, Woodland DL. Immunity to respiratory viruses. Annu. Rev. Immunol.27, 61–82 (2009).
  • Forrest BD, Pride MW, Dunning AJ et al. Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children. Clin. Vaccine Immunol.15(7), 1042–1053 (2008).
  • Kreijtz JH, Bodewes R, van Amerongen G et al. Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine25(4), 612–620 (2007).
  • Kreijtz JH, de Mutsert G, van Baalen CA, Fouchier RA, Osterhaus AD, Rimmelzwaan GF. Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus. J. Virol.82(11), 5161–5166 (2008).
  • Lee LY, Ha do LA, Simmons C et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Invest.118(10), 3478–3490 (2008).
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med.309(1), 13–17 (1983).
  • Epstein SL. Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis.193(1), 49–53 (2006).
  • Berkhoff EG, Geelhoed-Mieras MM, Fouchier RA, Osterhaus AD, Rimmelzwaan GF. Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones. J. Gen. Virol.88(Pt 2), 530–535 (2007).
  • Berkhoff EG, Boon AC, Nieuwkoop NJ et al. A mutation in the HLA-B*2705-restricted NP383–391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J. Virol.78(10), 5216–5222 (2004).
  • Berkhoff EG, Geelhoed-Mieras MM, Jonges M et al. An amino acid substitution in the influenza A virus hemagglutinin associated with escape from recognition by human virus-specific CD4+ T-cells. Virus Res.126(1–2), 282–287 (2007).
  • Boon AC, de Mutsert G, Graus YM et al. Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J. Virol.76(5), 2567–2572 (2002).
  • Roti M, Yang J, Berger D, Huston L, James EA, Kwok WW. Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus. J. Immunol.180(3), 1758–1768 (2008).
  • Yewdell JW, Haeryfar SM. Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Annu. Rev. Immunol.23, 651–682 (2005).
  • Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol.9, 1 (2008).
  • Kumar R, Burns EA. Age-related decline in immunity: implications for vaccine responsiveness. Expert Rev. Vaccines7(4), 467–479 (2008).
  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med.205(3), 711–723 (2008).
  • Kedzierska K, Day EB, Pi J et al. Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J. Immunol.177(10), 6705–6712 (2006).
  • Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J. Immunol.182(2), 784–792 (2009).
  • Messaoudi I, Guevara Patino JA, Dyall R, LeMaoult J, Nikolich-Zugich J. Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense. Science298(5599), 1797–1800 (2002).
  • Hammarlund E, Lewis MW, Hansen SG et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med.9(9), 1131–1137 (2003).
  • McMichael AJ, Gotch F, Cullen P, Askonas B, Webster RG. The human cytotoxic T cell response to influenza A vaccination. Clin. Exp. Immunol.43(2), 276–284 (1981).
  • He XS, Holmes TH, Zhang C et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J. Virol.80(23), 11756–11766 (2006).
  • Kreijtz JH, Osterhaus AD, Rimmelzwaan GF. Vaccination strategies and vaccine formulations for epidemic and pandemic influenza control. Hum. Vaccin.5(3), 126–135 (2009).
  • Baras B, Stittelaar KJ, Simon JH et al. Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS ONE3(1), e1401 (2008).
  • Stephenson I, Nicholson KG, Hoschler K et al. Antigenically distinct MF59-adjuvanted vaccine to boost immunity to H5N1. N. Engl. J. Med.359(15), 1631–1633 (2008).
  • Guillonneau C, Mintern JD, Hubert FX et al. Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc. Natl Acad. Sci. USA106(9), 3330–3335 (2009).
  • Lawson CM, Subbarao EK, Murphy BR. Nucleotide sequence changes in the polymerase basic protein 2 gene of temperature-sensitive mutants of influenza A virus. Virology191(1), 506–510 (1992).
  • Subbarao EK, Park EJ, Lawson CM, Chen AY, Murphy BR. Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design of a genetically engineered live influenza A virus vaccine. J. Virol.69(10), 5969–5977 (1995).
  • Lo CY, Wu Z, Misplon JA et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine26(17), 2062–2072 (2008).
  • Powell TJ, Strutt T, Reome J et al. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J. Immunol.178(2), 1030–1038 (2007).
  • Joshi NS, Cui W, Chandele A et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity27(2), 281–295 (2007).
  • Zehn D, Lee SY, Bevan MJ. Complete but curtailed T-cell response to very low-affinity antigen. Nature458(7235), 211–214 (2009).
  • Pantaleo G. HIV-1 T-cell vaccines: evaluating the next step. Lancet Infect. Dis.8(2), 82–83 (2008).
  • Ledford H. HIV vaccine may raise risk. Nature450(7168), 325 (2007).
  • McElrath MJ, De Rosa SC, Moodie Z et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet372(9653), 1894–1905 (2008).
  • Buchbinder SP, Mehrotra DV, Duerr A et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet372(9653), 1881–1893 (2008).
  • Kang SM, Yoo DG, Lipatov AS et al. Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS ONE4(3), e4667 (2009).
  • Deliyannis G, Jackson DC, Dyer W et al. Immunopotentiation of humoral and cellular responses to inactivated influenza vaccines by two different adjuvants with potential for human use. Vaccine16(20), 2058–2068 (1998).
  • Rimmelzwaan GF, Claas EC, van Amerongen G, de Jong JC, Osterhaus AD. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine17(11–12), 1355–1358 (1999).
  • Gluck R, Burri KG, Metcalfe I. Adjuvant and antigen delivery properties of virosomes. Curr. Drug Deliv.2(4), 395–400 (2005).
  • Rimmelzwaan GF, Baars M, van Beek R et al. Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and iscom vaccines. J. Gen. Virol.78(Pt 4), 757–765 (1997).
  • Rimmelzwaan GF, Nieuwkoop N, Brandenburg A et al. A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine19(9–10), 1180–1187 (2000).
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol. Cell Biol.83(2), 119–128 (2005).
  • Voeten JT, Rimmelzwaan GF, Nieuwkoop NJ, Lovgren-Bengtsson K, Osterhaus AD. Introduction of the haemagglutinin transmembrane region in the influenza virus matrix protein facilitates its incorporation into ISCOM and activation of specific CD8+ cytotoxic T lymphocytes. Vaccine19(4–5), 514–522 (2000).
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev.60(7), 795–804 (2008).
  • Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med.188(6), 1075–1082 (1998).
  • Epstein SL, Kong WP, Misplon JA et al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine23(46–47), 5404–5410 (2005).
  • Ulmer JB, Donnelly JJ, Parker SE et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science259(5102), 1745–1749 (1993).
  • Ulmer JB, Fu TM, Deck RR et al. Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J. Virol.72(7), 5648–5653 (1998).
  • Raviprakash K, Porter KR. Needle-free injection of DNA vaccines: a brief overview and methodology. Methods Mol. Med.127, 83–89 (2006).
  • Jones S, Evans K, McElwaine-Johnn H et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled Phase 1b clinical trial. Vaccine27(18), 2506–2512 (2009).
  • Chua BY, Zeng W, Jackson DC. Synthesis of Toll-like receptor-2 targeting lipopeptides as self-adjuvanting vaccines. Methods Mol. Biol.494, 247–261 (2008).
  • Jackson DC, Lau YF, Le T et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA101(43), 15440–15445 (2004).
  • Eriksson EM, Jackson DC. Recent advances with TLR2-targeting lipopeptide-based vaccines. Curr. Protein Pept. Sci.8(4), 412–417 (2007).
  • Alphs HH, Gambhira R, Karanam B et al. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc. Natl Acad. Sci. USA105(15), 5850–5855 (2008).
  • Deliyannis G, Kedzierska K, Lau YF et al. Intranasal lipopeptide primes lung-resident memory CD8+ T cells for long-term pulmonary protection against influenza. Eur J. Immunol.36(3), 770–778 (2006).
  • Day EB, Zeng W, Doherty PC, Jackson DC, Kedzierska K, Turner SJ. The context of epitope presentation can influence functional quality of recalled influenza A virus-specific memory CD8+ T cells. J. Immunol.179(4), 2187–2194 (2007).
  • Kawashima Y, Pfafferott K, Frater J et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature458(7238), 641–645 (2009).
  • Cornberg M, Chen AT, Wilkinson LA et al. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest.116(5), 1443–1456 (2006).
  • Price GE, Ou R, Jiang H, Huang L, Moskophidis D. Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. J. Exp. Med.191(11), 1853–1867 (2000).
  • Boon AC, De Mutsert G, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF. Preferential HLA usage in the influenza virus-specific CTL response. J. Immunol.172(7), 4435–4443 (2004).
  • Boon AC, de Mutsert G, van Baarle D et al. Recognition of homo- and heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes. J. Immunol.172(4), 2453–2460 (2004).
  • Rimmelzwaan GF, Boon AC, Voeten JT, Berkhoff EG, Fouchier RA, Osterhaus AD. Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res.103(1–2), 97–100 (2004).
  • Voeten JT, Bestebroer TM, Nieuwkoop NJ, Fouchier RA, Osterhaus AD, Rimmelzwaan GF. Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J. Virol.74(15), 6800–6807 (2000).
  • Berkhoff EG, Geelhoed-Mieras MM, Verschuren EJ et al. The loss of immunodominant epitopes affects interferon-γ production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response in vitro. Clin. Exp. Immunol.148(2), 296–306 (2007).
  • Barouch DH, Kunstman J, Kuroda MJ et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature415(6869), 335–339 (2002).
  • Badovinac VP, Hamilton SE, Harty JT. Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity18(4), 463–474 (2003).
  • Cheung CY, Poon LL, Lau AS et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet360(9348), 1831–1837 (2002).
  • Zhou J, Law HK, Cheung CY, Ng IH, Peiris JS, Lau YL. Functional tumor necrosis factor-related apoptosis-inducing ligand production by avian influenza virus-infected macrophages. J. Infect. Dis.193(7), 945–953 (2006).
  • Wiley JA, Cerwenka A, Harkema JR, Dutton RW, Harmsen AG. Production of interferon-γ by influenza hemagglutinin-specific CD8 effector T cells influences the development of pulmonary immunopathology. Am. J. Pathol.158(1), 119–130 (2001).
  • La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol.85(2), 85–92 (2007).
  • Selin LK, Brehm MA, Naumov YN et al. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev.211, 164–181 (2006).
  • Cornberg M, Sheridan BS, Saccoccio FM, Brehm MA, Selin LK. Protection against vaccinia virus challenge by CD8 memory T cells resolved by molecular mimicry. J. Virol.81(2), 934–944 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.