123
Views
40
CrossRef citations to date
0
Altmetric
Review

Drug-susceptibility testing in TB: current status and future prospects

, &
Pages 497-510 | Published online: 09 Jan 2014

References

  • WHO. Global tuberculosis control: epidemiology, strategy, financing: WHO Report 2009. WHO/HTM/TB/2009.411. WHO, Geneva, Switzerland, 1–303 (2009).
  • WHO. The WHO/IUATLD Project on Anti-tuberculosis Drug Resistance Surveillance, 2002–2007. WHO/HTM/TB/2008.394. WHO, Geneva, Switzerland, 1–142 (2008).
  • DIN 58943–58948; Medical microbiology – diagnosis of tuberculosis – Part 8: methods for the determination of susceptibility of tubercle bacilli to chemotherapeutic agents. DIN: 58943–58948 (2009).
  • US Standard from the National Committee for Clinical Laboratory Standards. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard, M24-A, NCCLS, Wayne, IN, USA.
  • Heifets LB. Drug Susceptibility in the Chemotherapy of Mycobacterial Infections. CRC Press, Boca Raton, FL, USA (1991).
  • WHO. The WHO/IUATLD Project on Anti-tuberculosis Drug Resistance Surveillance, 1999–2002. WHO/HTM/TB/2004.343. WHO, Geneva, Switzerland, 1–299 (2004).
  • WHO. Guidelines for drug susceptibility testing for second-line anti-tuberculosis drugs for DOTS-plus. WHO/CDS/TB/2001.288. WHO, Geneva, Switzerland, 1–13 (2001).
  • Kim SJ, Espinal MA, Abe C et al. Is second-line anti-tuberculosis drug susceptibility testing reliable? Int. J. Tuberc. Lung Dis.8(9), 1157–1158 (2004).
  • Tenover FC, Crawford JT, Huebner RE, Geiter LJ, Horsburgh CR Jr, Good RC. The resurgence of tuberculosis: is your laboratory ready? J. Clin. Microbiol.31(4), 767–770 (1993).
  • Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC mycobacteria growth indicator tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol.39(12), 4440–4444 (2001).
  • Bemer P, Palicova F, Rüsch-Gerdes S, Drugeon HB, Pfyffer GE. Multicenter evaluation of fully automated BACTEC mycobacteria growth indicator tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol.40(1), 150–154 (2002).
  • Scarparo C, Ricordi P, Ruggiero G, Piccoli P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. J. Clin. Microbiol.42(3), 1109–1114 (2004).
  • Pfyffer G, Palikova F, Rüsch-Gerdes S. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide with the nonradiometric BACTEC MGIT 960 system. J. Clin. Microbiol.40(5), 1670–1674 (2002).
  • Johansen IS, Thomsen VØ, Marjamäki M, Sosnovskaja A, Lundgren B. Rapid, automated, nonradiometric susceptibility testing of Mycobacterium tuberculosis complex to four first-line antituberculous drugs used in standard short-course chemotherapy. Diagn. Microbiol. Infect. Dis.50(2), 103–107 (2004).
  • Aono A, Hirano K, Hamasaki S, Abe C. Evaluation of BACTEC MGIT 960 PZA medium for susceptibility testing of Mycobacterium tuberculosis to pyrazinamide (PZA): compared with the results of pyrazinamidase assay and Kyokuto PZA test. Diagn. Microbiol. Infect. Dis.44(4), 347–352 (2002).
  • Tortoli E, Benedetti M, Fontanelli A, Simonetti MT. Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antituberculous drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. J. Clin. Microbiol.40(2), 607–610 (2002).
  • Garrigo M, Aragon LM, Alcaide F et al. Multicenter laboratory evaluation of the MB/BacT Mycobacterium detection system and the BACTEC MGIT 960 system in comparison with the BACTEC 460TB system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol.45(6), 1766–1770 (2007).
  • Pfyffer GE, Bonato DA, Ebrahimzadeh A et al. Multicenter laboratory validation of susceptibility testing of Mycobacterium tuberculosis against classical second-line and newer antimicrobial drugs by using the radiometric BACTEC 460 technique and the proportion method with solid media. J. Clin. Microbiol.37(10), 3179–3186 (1999).
  • Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob. Agents Chemother.47(11), 3616–3619 (2003).
  • Barreto AM, Araújo JB, de Melo Medeiros RF, de Souza Caldas PC. Evaluation of indirect susceptibility testing of Mycobacterium tuberculosis to the first- and second-line, and alternative drugs by the newer MB/BacT system. Mem. Inst. Oswaldo Cruz.98(6), 827–830 (2003).
  • Krüüner A, Yates MD, Drobniewski FA. Evaluation of MGIT 960-based antimicrobial testing and determination of critical concentrations of first- and second-line antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis. J. Clin. Microbiol.44(3), 811–818 (2006).
  • Rüsch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drug and newer antimicrobials. J. Clin. Microbiol.44(3), 688–692 (2006).
  • Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, Mehta A. Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 System. Int. J. Tuberc. Lung Dis.12(12), 1449–1455 (2008).
  • Martin A, von Groll A, Fissette K, Palomino JC, Varaine F, Portaels F. Rapid detection of Mycobacterium tuberculosis resistance to second-line drugs by use of the manual mycobacterium growth indicator tube system. J. Clin. Microbiol.46(12), 3952–3956 (2008).
  • Mitchison DA. Drug resistance in tuberculosis. Eur. Respir. J.25(2), 376–379 (2005).
  • Ängeby KAK, Werngren J, Toro JC, Hedström G, Petrini B, Hoffner SE. Evaluation of the BacT/ALERT 3D system for the recovery and drug susceptibility testing of Mycobacterium tuberculosis. Clin. Microbiol. Infect.9(11), 1148–1152 (2003).
  • Bemer P, Bodmer T, Munzinger J, Perrin M, Vincent V, Drugeon H. Multicenter evaluation of the MB/BacT system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol.42(3), 1030–1034 (2004).
  • Brunello F, Fontana R. Reliability of MB/BacT system for testing susceptibility of Mycobacterium tuberculosis complex isolates to antituberculous drugs. J. Clin. Microbiol.38(2), 872–873 (2000).
  • Rohner P, Ninet B, Metral C et al. Evaluation of the MB/BacT system and comparison to the BACTEC 460 system and solid media for isolation of mycobacteria from clinical specimens. J. Clin. Microbiol.35(12), 3127–3131 (1997).
  • Bergmann JS, Woods GL. Evaluation of the ESP culture system II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculous drugs. J. Clin. Microbiol.36(10), 2940–2943 (1998).
  • Ruiz P, Zerolo FJ, Casal MJ. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method. J. Clin. Microbiol.38(12), 4663–4664 (2000).
  • LaBombardi VJ. Comparison of the ESP and BACTEC system for testing susceptibilities of Mycobacterium tuberculosis complex isolates to pyrazinamide. J. Clin. Microbiol.40(6), 2238–2239 (2002).
  • Rüsch-Gerdes S, Domehl C, Nardi G, Gismondo MR, Welscher HM, Pfyffer GE. Multicenter evaluation of the Mycobacteria Growth Indicator Tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs. J. Clin. Microbiol.37(1), 45–48 (1999).
  • Ådjers-Koskelat K, Katila ML. Susceptibility testing with the manual Mycobateria Growth Indicator Tube (MGIT) and the MGIT 960 system provides rapid and reliable verification of multidrug-resistant tuberculosis. J. Clin. Microbiol.41(3), 1235–1239 (2003).
  • Bergmann JS, Fish G, Woods GL. Evaluation of the BBL MGIT (Mycobacterial Growth Indicator Tube) AST SIRE system for antimycobacterial susceptibility testing of Mycobacterium tuberculosis to 4 primary antituberculous drugs. Arch. Pathol. Lab. Med.124(1), 82–86 (2000).
  • Palomino JC, Traore H, Fissette K, Portaels F. Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis.3(4), 344–348 (1999).
  • Abate G, Aseffa A, Selassie A et al. Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol.42(2), 871–873 (2004).
  • Mengatto L, Chiani Y, Imaz MS. Evaluation of rapid alternative methods for drug susceptibility testing in clinical isolates of Mycobacterium tuberculosis. Mem. Inst. Oswaldo Cruz.101(5), 535–542 (2006).
  • Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother.55(4), 500–505 (2005).
  • Raut U, Narang P, Mendiratta DK, Narang R, Deotale V. Evaluation of rapid MTT tube method for detection of drug susceptibility of Mycobacterium tuberculosis to rifampicin and isoniazid. Indian J. Med. Microbiol.26(3), 222–227 (2008).
  • Martin A, Morcillo N, Lemus D et al. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis.9(8), 901–906 (2005).
  • Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.46(8), 2720–2722 (2002).
  • Franzblau SG, Witzig RS, McLaughlin JC et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol.36(2), 362–366 (1998).
  • Kumar M, Khan IA, Verma V, Qazi GN. Microplate nitrate reductase assay versus Alamar Blue assay for MIC determination of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis.9(8), 939–941 (2005).
  • Moore DA, Mendoza D, Gilman RH et al. Microscopic observation drug susceptibility assay, a rapid, reliable diagnostic test for multidrug-resistant tuberculosis suitable for use in resource-poor settings. J. Clin. Microbiol.42(10), 4432–4437 (2004).
  • Moore DA, Evans CA, Gilman RH et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N. Engl. J. Med.355(15), 1539–1550 (2006).
  • Devasia RA, Blackman A, May C et al. Fluoroquinolone resistance in Mycobacterium tuberculosis: an assessment of MGIT 960, MODS and nitrate reductase assay and fluoroquinolone cross-resistance. J. Antimicrob. Chemother.63(6), 1173–1178 (2009).
  • Bwanga F, Hoffner S, Haile M, Joloba ML. Direct susceptibility testing for multi drug resistant tuberculosis: A meta-analysis. BMC Infect. Dis.9(67), 1–15 (2009).
  • Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J. Clin. Microbiol.40(2), 553–555 (2002).
  • Martin A, Panaiotov S, Portaels F et al. The nitrate reductase assay for the rapid detection of isoniazid and rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J. Antimicrob. Chemother.62(1), 56–64 (2008).
  • Musa HR, Ambroggi M, Souto A, Angeby KA. Drug susceptibility testing of Mycobacterium tuberculosis by a nitrate reductase assay applied directly on microscopy-positive sputum samples. J. Clin. Microbiol.43(7), 3159–3161 (2005).
  • Affolabi D, Odoun M, Sanoussi N et al. Rapid and inexpensive detection of multidrug-resistant Mycobacterium tuberculosis with the nitrate reductase assay using liquid medium and direct application to sputum samples. J. Clin. Microbiol.46(10), 3243–3245 (2008).
  • Shikama ML, Ferro e Silva R, Villela G et al. Multicentre study of nitrate reductase assay for rapid detection of rifampicin-resistant M. tuberculosis. Int. J. Tuberc. Lung Dis.13(3), 377–380 (2009).
  • Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat. Med.3(4), 465–468 (1997).
  • Jacobs WR Jr, Barletta RG, Udani R et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science260(5109), 819–822 (1993).
  • Pai M, Kalantri S, Pascopella L, Riley LW, Reingold AL. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J. Infect.51(3), 175–187 (2005).
  • Albert H, Trollip AP, Seaman T et al. Evaluation of a rapid screening test for rifampicin resistance in re-treatment tuberculosis patients in the Eastern Cape. S. Afr. Med. J.97(9), 858–863 (2007).
  • Hausdorfer J, Sompek E, Allerberger F, Dierich MP, Rüsch-Gerdes S. E-test for susceptibility testing of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis.2(9), 751–755 (1998).
  • Freixo MI, Caldas PC, Said A et al. Antimicrobial susceptibility determined by the E test, Löwenstein–Jensen proportion, and DNA sequencing methods among Mycobacterium tuberculosis isolates discrepancies, preliminary results. Mem. Inst. Oswaldo Cruz.99(1), 107–110 (2004).
  • Ingham CJ, Ayad AB, Nolsen K, Mulder B. Rapid drug susceptibility testing of mycobacteria by culture on a highly porous ceramic support. Int. J. Tuberc. Lung Dis.12(6), 645–650 (2008).
  • Robledo J, Mejia GI, Paniagua L, Martin A, Guzmán A. Rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis by the direct thin-layer agar method. Int. J. Tuberc. Lung Dis.12(12), 1482–1484 (2008).
  • Zhang Y, Telenti A. Genetics of drug resistance in Mycobacterium tuberculosis. In: Molecular Genetics of Mycobacteria. Harfull GF, Jacobs WR Jr (Eds). ASM Press, Washington, DC, USA, 235–251 (2000).
  • Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.49(8), 3192–3197 (2005).
  • Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.49(2), 571–577 (2005).
  • Telenti A, Imboden P, Marchesi F et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet341(8846), 647–650 (1993).
  • Telenti A, Honoré N, Bernasconi C et al. Genotyping assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin. Microbiol.35(3), 719–723 (1997).
  • Herrera L, Jimenez S, Valverde A, Garcia-Aranda MA, Saez-Nieto JA. Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int. J. Antimicrob. Agents21(5), 403–408 (2003).
  • Ling DI, Zwerling AA, Pai M. Rapid diagnosis of drug-resistant TB using line probe assays: from evidence to policy. Expert Rev. Respir. Med.2(5), 583–588 (2008).
  • Bodiguel J, Nagy JM, Brown KA, Jamart-Grégoire B. Oxidation of isoniazid by manganese and Mycobacterium tuberculosis catalase–peroxidase yields a new mechanism of activation. J. Am. Chem. Soc.123(16), 3832–3833 (2001).
  • Vilchèze C, Jacobs WR Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol.61, 35–50 (2007).
  • Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JD. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis.173(1), 196–202 (1996).
  • Piatek AS, Telenti A, Murray MR et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob. Agents Chemother.44(1), 103–110 (2000).
  • Sherman DR, Mdluli K, Hickey MJ et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science272(5268), 1641–1643 (1996).
  • Lee ASG, Teo ASM, Wong SY. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother.45(7), 2157–2159 (2001).
  • Lee ASG, Lim IHK, Tang LLH, Telenti A, SY Wong. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob. Agents Chemother.43(8), 2087–2089 (1999).
  • Belanger AE, Besra GS, Ford ME et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl Acad. Sci. USA93(21), 11919–11924 (1996).
  • Khoo KH, Douglas E, Azadi P et al. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J. Biol. Chem.271(45), 28682–28690 (1996).
  • Plinke C, Rüsch-Gerdes S, Niemann S. Significance of mutations in embB codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother.50(5), 1900–1902 (2006).
  • Safi H, Sayers B, Hazbon MH, Alland D. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob. Agents Chemother.52(52), 2027–2034 (2008).
  • Hillemann D, Rüsch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin–capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J. Clin. Microbiol.47(6), 1767–1772 (2009).
  • Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med.2(6), 662–667 (1996).
  • Alangaden GJ, Kreiswirth BN, Aouad A et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.42(5), 1295–1297 (1998).
  • Takiff H, Salazar L, Guerrero C et al. Cloning and nucleotide sequence of the Mycobacterium tuberculosisgyrA and gyrB genes, and detection of quinolone resistance mutations. Antimicrob. Agents Chemother.38(4), 773–780 (1994).
  • Banerjee A, Dubnau E, Quemard A et al.InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263(5144), 227–230 (1994).
  • Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates Antimicrob. Agents Chemother.47(12), 3799–3805 (2003).
  • Mestdagh M, Fonteyne PA, Realini L et al. Relationship between pyrazinamide resistance, loss of pyrazinamidase activity, and mutations in the pncA locus in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.43(9), 2317–2319 (1999).
  • Park H, Song EJ, Song ES et al. Comparison of a conventional antimicrobial susceptibility assay to an oligonucleotide chip system for detection of drug resistance in Mycobacterium tuberculosis isolates. J. Clin. Microbiol.44(5), 1619–1624 (2006).
  • Aragon LM, Navarro F, Heiser V, Garrigo M, Espanol M, Coll P. Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays. J. Antimicrob. Chemother.57(5), 825–831 (2006).
  • Caoili JC, Mayorova A, Sikes D, Hickman L, Plikaytis BB, Shinnick TM. Evaluation of the TB-Biochip oligonucleotide microarray system for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol.44(7), 2378–2381 (2006).
  • Sougakoff W, Rodrigue M, Truffot-Pernot C et al. Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis. Clin Microbiol Infect.10(4), 289–294 (2004).
  • Antonova OV, Gryadunov DA, Lapa SA et al. Detection of mutations in Mycobacterium tuberculosis genome determining resistance to fluoroquinolones by hybridization on biological microchips. Bull. Exp. Biol. Med.145(1), 108–113 (2008).
  • Senna SG, Gomes HM, Ribeiro M, Kristki AL, Rossetti ML, Suffys PN. In house reverse line hybridization assay for rapid detection of susceptibility to rifampicin in isolates of Mycobacterium tuberculosis. J. Microbiol. Methods67(2), 385–389 (2006).
  • Giannoni F, Iona E, Sementilli F et al. Evaluation of a new line probe assay for rapid identification of gyrA mutations in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.49(7), 2928–2933 (2005).
  • Sekiguchi J, Nakamura T, Miyoshi-Akiyama T et al. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis strains. J. Clin. Microbiol.45(9), 2802–2807 (2007).
  • Bang D, Andersen AB, Thomsen VO. Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J. Clin. Microbiol.44(7), 2605–2608 (2006).
  • Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S. Use of the GenoType MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J. Clin. Microbiol.43(8), 3699–3703 (2005).
  • Mäkinen J, Marttila HJ, Marjamaki M, Viljanen MK, Soini H. Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J. Clin. Microbiol.44(2), 350–352 (2006).
  • Miotto P, Piana F, Penati V, Canducci F, Migliori GB, Cirillo DM. Use of GenoType MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy. J. Clin. Microbiol.44(7), 2485–2491 (2006).
  • Traore H, van Deun A, Shamputa IC, Rigouts L, Portaels F. Direct detection of Mycobacterium tuberculosis complex DNA and rifampin resistance in clinical specimens from tuberculosis patients by line probe assay. J. Clin. Microbiol.44(12), 4384–4388 (2006).
  • Hillemann D, Rüsch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J. Clin. Microbiol.45(8), 2635–2640 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.