116
Views
9
CrossRef citations to date
0
Altmetric
Review

Asthma phenotypes in adults and clinical implications

&
Pages 607-625 | Published online: 09 Jan 2014

References

  • Wenzel SE, Busse WW. Severe asthma: lessons from the Severe Asthma Research Program. J. Allergy Clin. Immunol.119(1), 14–21 (2007).
  • National Asthma Education and Prevention Program. Expert panel report 3 (EPR3): guidelines for the diagnosis and management of asthma. J. Allergy Clin. Immunol.120(5 Suppl.), S94–S138 (2007).
  • Encarta World English Dictionary. Soukhanov Am (Ed.). St Martin Press, NY, USA (1999).
  • D’silva L, Cook RJ, Allen CJ, Hargreave FE, Parameswaran K. Changing pattern of sputum cell counts during successive exacerbations of airway disease. Respir. Med.101(10), 2217–2220 (2007).
  • Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet368(9537), 804–813 (2006).
  • Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J. Allergy Clin. Immunol.113(1), 101–108 (2004).
  • Miller MK, Johnson C, Miller DP, Deniz Y, Bleecker ER, Wenzel SE; TENOR Study Group. Severity assessment in asthma: an evolving concept. J. Allergy Clin. Immunol.116(5), 990–995 (2005).
  • Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention (GINA). NIH, National Heart, Lung and Blood Institute, Bethesda, MD, USA, Report no. 02–3659 (2002).
  • Bateman ED, Hurd SS, Barnes PJ et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J.31(1), 143–178 (2008).
  • Wenzel SE, Schwartz LB, Langmack EL et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med.160(3), 1001–1008 (1999).
  • Wenzel SE, Fahy J, Irvin C, Peters S, Spector S, Szefler S. Proceedings of the ATS Workshop on Refractory Asthma. Am. J. Respir. Crit. Care Med.162(6), 2341–2351 (2000).
  • Moore WC, Bleecker ER, Curran-Everett D et al.; for the National Heart, Lung, Blood Institute’s Severe Asthma Research Program. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J. Allergy Clin. Immunol.119(2), 405–413 (2007).
  • The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur. Respir. J.22(3), 470–477 (2003).
  • Sorkness RL, Bleecker ER, Busse WW et al. National Heart, Lung, and Blood Institute Severe Asthma Research Program. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J. Appl. Physiol.104(2), 394–403 (2008).
  • Fitzpatrick AM, Gaston BM, Erzurum SC, Teague WG. National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Features of severe asthma in school-age children: Atopy and increased exhaled nitric oxide. J. Allergy Clin. Immunol.118(6), 1218–1225 (2006).
  • Chan MT, Leung DY, Szefler SJ, Spahn JD. Difficult-to-control asthma: clinical characteristics of steroid-insensitive asthma. J. Allergy Clin. Immunol.101(5), 594–601 (1998).
  • Thomson NC, Chaudhuri R. Identification and management of adults with asthma prone to exacerbations: can we do better? BMC Pulm. Med.8(27), 1–3 (2008).
  • Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin. Exp. Allergy39(2), 193–202 (2009).
  • ten Brinke A, Ouwerkerk ME, Zwinderman AH, Spinhoven P, Bel EH. Psychopathology in patients with severe asthma is associated with increased health care utilization. Am. J. Respir. Crit. Care Med.163(5), 1093–1096 (2001).
  • Busse W, Corren J, Lanier BQ et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol.108(2), 184–190 (2001).
  • Solèr M, Matz J, Townley R et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J.18(2), 254–261 (2001).
  • Milgrom H, Berger W, Nayak A et al. Treatment of childhood asthma with anti- immunoglobulin E antibody (omalizumab). Pediatrics108, e36 (2001).
  • Haldar P, Brightling CE, Hargadon B et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med.360(10), 973–984 (2009).
  • Nair P, Pizzichini MM, Kjarsgaard M et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med.360(10), 985–993 (2009).
  • Covar RA, Spahn JD, Murphy JR, Szefler SJ; for the Childhood Asthma Management Program Research Group. Progression of asthma measured by lung function in the childhood asthma management program. Am. J. Respir. Crit. Care Med.170(3), 234–241 (2004).
  • Dolan CM, Fraher KE, Bleecker ER et al. Design and baseline characteristics of the epidemiology and natural history of asthma: outcomes and treatment regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Ann. Allergy Asthma Immunol.92(1), 32–39 (2004).
  • Lee JH, Haselkorn T, Borish L, Rasouliyan L, Chipps BE, Wenzel SE. Risk factors associated with persistent airflow limitation in severe or difficult-to-treat asthma: insights from the TENOR study. Chest132(6), 1882–1889 (2007).
  • Bumbacea D, Campbell D, Nguyen L et al. Parameters associated with persistent airflow obstruction in chronic severe asthma. Eur. Respir. J.24(1), 122–128 (2004).
  • ten Brinke A, Zwinderman AH, Sterk PJ, Rabe KF, Bel EH. Factors associated with persistent airflow limitation in severe asthma. Am. J. Respir. Crit. Care Med.164(5), 744–748 (2001).
  • Sandford AJ, Chagani T, Zhu S et al. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J. Allergy Clin. Immunol.106(1 Pt 1), 135–140 (2000).
  • Beghé B, Barton S, Rorke S et al. Polymorphisms in the interleukin-4 and interleukin-4 receptor α chain genes confer susceptibility to asthma and atopy in a Caucasian population. Clin. Exp. Allergy33(8), 1111–1117 (2003).
  • Pulleyn LJ, Newton R, Adcock IM, Barnes PJ. TGFβ1 allele association with asthma severity. Hum. Genet.109(6), 623–627 (2001).
  • Silverman ES, Palmer LJ, Subramaniam V et al. Transforming growth factor-β1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med.169(2), 214–219 (2004).
  • Ueda T, Niimi A, Matsumoto H et al. TGFB1 promoter polymorphism C-509T and pathophysiology of asthma. J. Allergy Clin. Immunol.121(3), 659–664 (2008).
  • Howard TD, Postma DS, Jongepier H et al. Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. J. Allergy Clin. Immunol.112(4), 717–722 (2003).
  • Lee JH, Park HS, Park SW et al. ADAM33 polymorphism: association with bronchial hyper-responsiveness in Korean asthmatics. Clin. Exp. Allergy34(6), 860–865 (2004).
  • Jongepier H, Boezen HM, Dijkstra A et al. Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin. Exp. Allergy34(5), 757–760 (2004).
  • van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Schouten JP, Boezen HM. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am. J. Respir. Crit. Care Med.172(3), 329–333 (2005).
  • van Veen IH, ten Brinke A, van der Linden AC, Rabe KF, Bel EH. Deficient α-1-antitrypsin phenotypes and persistent airflow limitation in severe asthma. Respir. Med.100(9), 1534–1539 (2006).
  • Dijkstra A, Vonk JM, Jongepier H et al. Lung function decline in asthma: association with inhaled corticosteroids, smoking and sex. Thorax61(2), 105–110 (2006).
  • Heaney LG, Robinson DS. Severe asthma treatment: need for characterising patients. Lancet365(9463), 974–976 (2005).
  • Adcock IM, Ito K. Steroid resistance in asthma: a major problem requiring novel solutions or a non-issue? Curr. Opin Pharmacol.4(3), 257–262 (2004).
  • Szefler SJ, Martin RJ, King TS et al.; Asthma Clinical Research Network of the National Heart Lung, and Blood Institute. Significant variability in response to inhaled corticosteroids for persistent asthma. J. Allergy Clin. Immunol.109(3), 410–418 (2002).
  • Martin RJ, Szefler SJ, King TS et al. National Heart, Lung, and Blood Institute’s Asthma Clinical Research Center. The Predicting Response to Inhaled Corticosteroid Efficacy (PRICE) trial. J. Allergy Clin. Immunol.119(1), 73–80 (2007).
  • Adcock IM, Lane SJ. Corticosteroid-insensitive asthma: molecular mechanisms. J. Endocrinol.178(3), 347–355 (2003).
  • Adcock IM, Barnes PJ. Molecular mechanisms of corticosteroid resistance. Chest134(2), 394–401 (2008).
  • Adcock IM, Ford PA, Bhavsar P, Ahmad T, Chung KF. Steroid resistance in asthma: mechanisms and treatment options. Curr. Allergy Asthma Rep.8(2), 171–178 (2008).
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet373(9678), 1905–1917 (2009).
  • Bacci E, Cianchetti S, Bartoli M et al. Low sputum eosinophils predict the lack of response to beclomethasone in symptomatic asthmatic patients. Chest129(3), 565–572 (2006).
  • Tsoumakidou M, Papadopouli E, Tzanakis N, Siafakas NM. Airway inflammation and cellular stress in noneosinophilic atopic asthma. Chest129(5), 1194–1202 (2006).
  • Pavord ID, Brightling CE, Woltmann G et al. Non-eosinophilic corticosteroid unresponsive asthma. Lancet353(9171), 2213–2214 (1999).
  • Green RH, Brightling CE, Woltmann G et al. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax57(10), 875–879 (2002).
  • Lane SJ, Adcock IM, Richards D, Hawrylowicz C, Barnes PJ, Lee TH. Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes. J. Clin. Invest.102(12), 2156–2164 (1998).
  • Kraft M, Hamid Q, Chrousos GP, Martin RJ, Leung DY. Decreased steroid responsiveness at night in nocturnal asthma. Is the macrophage responsible? Am. J. Respir. Crit. Care Med.163(5), 1219–1225 (2001).
  • Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur. Respir. J.25(3), 552–563 (2005).
  • Goleva E, Hauk PJ, Hall CF et al. Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages. J. Allergy Clin. Immunol.122(3), 550–559.e3 (2008).
  • McKinley L, Alcorn JF, Peterson A et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol.181(6), 4089–4097 (2008).
  • Yang M, Kumar RK, Foster PS. Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-γ and TLR4/MyD88 pathways. J. Immunol.182(8), 5107–5115 (2009).
  • Wenzel S. Severe/fatal asthma. Chest123(3 Suppl.), 405S–410S (2003).
  • Weidinger S, O’Sullivan M, Illig T et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J. Allergy Clin. Immunol.121(5), 1203–1209.e1 (2008).
  • Marenholz I, Kerscher T, Bauerfeind A et al. An interaction between filaggrin mutations and early food sensitization improves the prediction of childhood asthma. J. Allergy Clin. Immunol.123(4), 911–916 (2009).
  • Moffatt MF, Kabesch M, Liang L et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature448(7152), 470–473 (2007).
  • Bouzigon E, Corda E, Aschard H et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med.359(19), 1985–1994 (2008).
  • Morita H, Nagai R, Bouzigon E, Siroux V, Demenais F. Smoking exposure, 17q21 variants, and early-onset asthma. N. Engl. J. Med.360(12), 1255–1256 (2009).
  • Tang EA, Matsui E, Wiesch DG, Samet JM. Epidemiology of asthma and allergic diseases. In: Middleton’s Allergy: Principles and Practice (7th Edition). Adkinson NF Jr, Yunginger J, Busse W (Eds). Mosby, MO, USA, 1715–1756 (2008).
  • Celedon JC, Wright RJ, Litonjua AA et al. Day care attendance in early life, maternal history of asthma, and asthma at the age of 6 years. Am. J. Respir. Crit. Care Med.167(9), 1239–1243 (2003).
  • Illi S, von Mutius E, Lau S et al.; Multicenter Allergy Study Group. The pattern of atopic sensitization is associated with the development of asthma in childhood. J. Allergy Clin. Immunol.108(5), 709–714 (2001).
  • Celedón JC, Litonjua AA, Ryan L, Platts-Mills T, Weiss ST, Gold DR. Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet360(9335), 781–782 (2002).
  • Lau S, Illi S, Platts-Mills TA et al.; Multicentre Allergy Study Group. Longitudinal study on the relationship between cat allergen and endotoxin exposure, sensitization, cat-specific IgG and development of asthma in childhood – report of the German Multicentre Allergy Study (MAS 90). Allergy60(6), 766–773 (2005).
  • Rosenstreich DL, Eggleston P, Kattan M et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N. Engl. J. Med.336(19), 1356–1363 (1997).
  • Perzanowski MS, Miller RL, Thorne PS et al. Endotoxin in inner-city homes: associations with wheeze and eczema in early childhood. J. Allergy Clin. Immunol.117(5), 1082–1089 (2006).
  • Donohue KM, Al-alem U, Perzanowski MS et al. Anti-cockroach and anti-mouse IgE are associated with early wheeze and atopy in an inner-city birth cohort. J. Allergy Clin. Immunol.122(5), 914–920 (2008).
  • Martinez FD, Holt PG. Role of microbial burden in aetiology of allergy and asthma. Lancet354(Suppl. 2), SII12–SII15 (1999).
  • Hesselmar B, Aberg N, Aberg B, Eriksson B, Björkstén B. Does early exposure to cat or dog protect against later allergy development? Clin. Exp. Allergy29(5), 611–617 (1999).
  • Ball TM, Castro-Rodriguez JA, Griffith KA, Holberg CJ, Martinez FD, Wright AL. Siblings, day-care attendance, and risk of asthma and wheezing during childhood. N. Engl. J. Med.343(8), 538–543 (2000).
  • Gereda JE, Leung DY, Liu AH. Levels of environmental endotoxin and prevalence of atopic disease. JAMA284(13), 1652–1653 (2000).
  • Remes ST, Castro-Rodriguez JA, Holberg CJ, Martinez FD, Wright AL. Dog exposure in infancy decreases the subsequent risk of frequent wheeze but not of atopy. J. Allergy Clin. Immunol.108(4), 509–515 (2001).
  • Riedler J, Braun-Fahrländer C, Eder W et al.; ALEX Study Team. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet358(9288), 1129–1133 (2001).
  • Nafstad P, Magnus P, Gaarder PI, Jaakkola JJ. Exposure to pets and atopy-related diseases in the first 4 years of life. Allergy56(4), 307–312 (2001).
  • Braun-Fahrländer C, Riedler J, Herz U et al.; Allergy and Endotoxin Study Team. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med.347(12), 869–877 (2002).
  • Ege MJ, Frei R, Bieli C et al.; PARSIFAL Study team. Not all farming environments protect against the development of asthma and wheeze in children. J. Allergy Clin. Immunol.119(5), 1140–1147 (2007).
  • Wills-Karp M, Luyimbazi J, Xu X et al. Interleukin-13: central mediator of allergic asthma. Science282(5397), 2258–2261 (1998).
  • Grünig G, Warnock M, Wakil AE et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282(5397), 2261–2263 (1998).
  • Wills-Karp M. Murine models of asthma in understanding immune dysregulation in human asthma. Immunopharmacology48(3), 263–268 (2000).
  • Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol. Rev.202, 175–190 (2004).
  • Kay AB. The role of T lymphocytes in asthma. Chem. Immunol. Allergy91, 59–75 (2006).
  • Perkins C, Wills-Karp M, Finkelman FD. IL-4 induces IL-13-independent allergic airway inflammation. J. Allergy Clin. Immunol.118(2), 410–419 (2006).
  • Gundel R, Lindell D, Harris P, Fournel M, Jesmok G, Gerritsen ME. IL-4 induced leukocyte trafficking in cynomolgus monkeys: correlation with expression of adhesion molecules and chemokine generation. Clin. Exp. Allergy26(6), 719–729 (1996).
  • Blease K, Jakubzick C, Westwick J, Lukacs N, Kunkel SL, Hogaboam CM. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J. Immunol.166(8), 5219–5224 (2001).
  • Tomkinson A, Duez C, Cieslewicz G et al. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol.166(9), 5792–5800 (2001).
  • Hessel EM, Chu M, Lizcano JO et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med.202(11), 1563–1573 (2005).
  • Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two Phase 2a studies. Lancet370(9596), 1422–1431 (2007).
  • Hytönen AM, Löwhagen O, Arvidsson M et al. Haplotypes of the interleukin-4 receptor α chain gene associate with susceptibility to and severity of atopic asthma. Clin. Exp. Allergy34(10), 1570–1575 (2004).
  • Isidoro-García M, Dávila I, Laffond E, Moreno E, Lorente F, González-Sarmiento R. Interleukin-4 (IL4) and interleukin-4 receptor (IL4RA) polymorphisms in asthma: a case control study. Clin. Mol. Allergy3(15), 1–7 (2005).
  • Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun.7(2), 95–100 (2006).
  • Wenzel SE, Balzar S, Ampleford E et al. IL4R α mutations are associated with asthma exacerbations and mast cell/IgE expression. Am. J. Respir. Crit. Care Med.175(6), 570–576 (2007).
  • Daley D, Lemire M, Akhabir L et al. Analyses of associations with asthma in four asthma population samples from Canada and Australia. Hum. Genet.125(4), 445–459 (2009).
  • Weiss ST, Raby BA, Rogers A. Asthma genetics and genomics 2009. Curr. Opin. Genet. Dev.19(3), 279–282 (2009).
  • Woodruff PG, Modrek B, Choy DF et al. Th2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med.180(5), 388–395 (2009).
  • Black S, Teixeira AS, Loh AX et al. Contribution of functional variation in the IL13 gene to allergy, hay fever and asthma in the NSHD longitudinal 1946 birth cohort. Allergy64(8), 1172–1178 (2009).
  • Marenholz I, Nickel R, Rüschendorf F et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J. Allergy Clin. Immunol.118(4), 866–871 (2006).
  • Henderson J, Northstone K, Lee SP et al. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J. Allergy Clin. Immunol.121(4), 872–877.e9 (2008).
  • van den Oord RA, Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. Br. Med. J. DOI: 10.1136/bmj.b1203(2009) (Epub ahead of print).
  • Abramson MJ, Puy RM, Weiner JM. Allergen immunotherapy for asthma. Cochrane Database Syst. Rev.4, CD001186 (2003).
  • Cevit O, Kendirli SG, Yilmaz M, Altintas DU, Karakoc GB. Specific allergen immunotherapy: effect on immunologic markers and clinical parameters in asthmatic children. J. Investig. Allergol. Clin. Immunol.17(5), 286–291 (2007).
  • Buhl R, Solèr M, Matz J et al. Omalizumab provides long-term control in patients with moderate-to-severe allergic asthma. Eur. Respir. J.20(1), 73–78 (2002).
  • Bosquet J, Cabrera P, Berkman N et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy60(3), 302–308 (2005).
  • Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J. Allergy Clin. Immunol.111(5), 913–921 (2003).
  • Stevenson DD, Szczeklik A. Clinical and pathologic perspectives on aspirin sensitivity and asthma. J. Allergy Clin. Immunol.118(4), 773–786 (2006).
  • Szczeklik A. Aspirin-induced asthma as a viral disease. Clin. Allergy18(1), 15–20 (1988).
  • Szczeklik A, Sanak M. The broken balance in aspirin hypersensitivity. Eur. J. Pharmacol.533(1–3), 145–155 (2006).
  • Sousa AR, Lams BE, Pfister R, Christie PE, Schmitz M, Lee TH. Expression of interleukin-5 and granulocyte–macrophage colony-stimulating factor in aspirin-sensitive and non-aspirin-sensitive asthmatic airways. Am. J. Respir. Crit. Care Med.156(5), 1384–1389 (1997).
  • Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N. Engl. J. Med.347(19), 1493–1499 (2002).
  • Corrigan C, Mallett K, Ying S et al. Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J. Allergy Clin. Immunol.115(2), 316–322 (2005).
  • Stankovic KM, Goldsztein H, Reh DD, Platt MP, Metson R. Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma. Laryngoscope118(5), 881–889 (2008).
  • Kim SH, Hur GY, Choi JH, Park HS. Pharmacogenetics of aspirin-intolerant asthma. Pharmacogenomics9(1), 85–91 (2008).
  • Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet350(9091), 1599–1600 (1997).
  • Cowburn AS, Sladek K, Soja J et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J. Clin. Invest.101(4), 834–846 (1998).
  • Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am. J. Respir. Cell. Mol. Biol.23(3), 290–296 (2000).
  • Sanak M, Szczeklik A. Leukotriene C4 synthase polymorphism and aspirin-induced asthma. J. Allergy Clin. Immunol.107(3), 561–562 (2001).
  • Kawagishi Y, Mita H, Taniguchi M et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J. Allergy Clin. Immunol.109(6), 936–942 (2002).
  • Kim SH, Oh JM, Kim YS et al. Cysteinyl leukotriene receptor 1 promoter polymorphism is associated with aspirin-intolerant asthma in males. Clin. Exp. Allergy36(4), 433–439 (2006).
  • Kim SH, Yang EM, Park HJ, Ye YM, Lee HY, Park HS. Differential contribution of the CysLTR1 gene in patients with aspirin hypersensitivity. J. Clin. Immunol.27(6), 613–619 (2007).
  • Kim SH, Ye YM, Hur GY et al. CysLTR1 promoter polymorphism and requirement for leukotriene receptor antagonist in aspirin-intolerant asthma patients. Pharmacogenomics8(9), 1143–1150 (2007).
  • Dahlén B, Nizankowska E, Szczeklik A et al. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am. J. Respir. Crit. Care Med.157(4 Pt 1), 1187–1194 (1998).
  • Dahlén SE, Malmström K, Nizankowska E et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med.165(1), 9–14 (2002).
  • American Thoracic Society. Guidelines for assessing and managing asthma risk at work, school and recreation. Am. J. Respir. Crit. Care Med.169(7), 873–881 (2004).
  • Mapp CE, Boschetto P, Maestrelli P, Fabbri LM. Occupational asthma. Am. J. Respir. Crit. Care Med.172(3), 280–305 (2005).
  • Mapp CE, Miotto D, Boschetto P. Occupational asthma. Med. Lav.97(2), 404–409 (2006).
  • Bush RK. Current perspectives in occupational asthma. J. Allergy Clin. Immunol.123(3), 567–568 (2009).
  • Maestrelli P, Boschetto P, Fabbri LM, Mapp CE. Mechanisms of occupational asthma. J. Allergy Clin. Immunol.123(3), 531–542 (2009).
  • Malo JL, Chan-Yeung M. Agents causing occupational asthma. J. Allergy Clin. Immunol.123(3), 545–550 (2009).
  • Vandenplas O, Malo JL. Definitions and types of work-related asthma: a nosological approach. Eur. Respir. J.21(4), 706–712 (2003).
  • Dykewicz MS. Occupational asthma: current concepts in pathogenesis, diagnosis, and management. J. Allergy Clin. Immunol.123(3), 519–528 (2009).
  • Saetta M, Di Stefano A, Maestrelli P et al. Airway mucosal inflammation in occupational asthma induced by toluene diisocyanate. Am. Rev. Respir. Dis.145(1), 160–168 (1992).
  • Frew AJ, Chan H, Lam S, Chan-Yeung M. Bronchial inflammation in occupational asthma due to western red cedar. Am. J. Respir. Crit. Care Med.151(2 Pt 1), 340–344 (1995).
  • Lemière C, Malo JL, Boutet M. Reactive airways dysfunction syndrome due to chlorine: sequential bronchial biopsies and functional assessment. Eur. Respir. J.10(1), 241–244 (1997).
  • Piirilä P, Wikman H, Luukkonen R et al. Glutathione S-transferase genotypes and allergic responses to diisocyanate exposure. Pharmacogenetics11(5), 437–445 (2001).
  • Mapp CE, Beghé B, Balboni A et al. Association between HLA genes and susceptibility to toluene diisocyanate-induced asthma. Clin. Exp. Allergy30(5), 651–656 (2000).
  • Young RP, Barker RD, Pile KD, Cookson WO, Taylor AJ. The association of HLA-DR3 with specific IgE to inhaled acid anhydrides. Am. J. Respir. Crit. Care Med.151(1), 219–221 (1995).
  • Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur. Respir. J.15(5), 911–914 (2001).
  • Smith AM, Bernstein DI. Management of work-related asthma. J. Allergy Clin. Immunol.123(3), 551–557 (2009).
  • Maestrelli P. Natural history of adult-onset asthma: insights from model of occupational asthma. Am. J. Respir. Crit. Care Med.169(3), 331–332 (2004).
  • Schatz M, Dombrowski MP, Wise R et al. Asthma morbidity during pregnancy can be predicted by severity classification. J. Allergy Clin. Immunol.112(2), 283–288 (2003).
  • Sunday L, Tran MM, Krause DN, Duckles SP. Estrogen and progestagens differentially modulate vascular proinflammatory factors. Am. J. Physiol. Endocrinol. Metab.291(2), E261–E267 (2006).
  • Murphy VE, Gibson PG. Premenstrual asthma: prevalence, cycle-to-cycle variability and relationship to oral contraceptive use and menstrual symptoms. J. Asthma45(8), 696–704 (2008).
  • Skobeloff EM, Spivey WH, Silverman R, Eskin BA, Harchelroad F, Alessi TV. The effect of the menstrual cycle on asthma presentations in the emergency department. Arch. Intern. Med.156(16), 1837–1840 (1996).
  • Brenner BE, Holmes TM, Mazal B, Camargo CA Jr. Relation between phase of the menstrual cycle and asthma presentations in the emergency department. Thorax60(10), 806–809 (2005).
  • Martinez-Moragón E, Plaza V, Serrano J et al. Near-fatal asthma related to menstruation. J. Allergy Clin. Immunol.113(2), 242–244 (2004).
  • Real FG, Svanes C, Omenaas ER et al. Menstrual irregularity and asthma and lung function. J. Allergy Clin. Immunol.120(3), 557–564 (2007).
  • Farha S, Asosingh K, Laskowski D et al. Effects of the menstrual cycle on lung function variables in women with asthma. Am. J. Respir. Crit. Care Med.180(4), 304–310 (2009).
  • Ensom MH, Chong G, Zhou D, Beaudin B, Shalansky S, Bai TR. Estradiol in premenstrual asthma: a double-blind, randomized, placebo-controlled, crossover study. Pharmacotherapy23(5), 561–571 (2003).
  • Schoene RB, Giboney K, Schimmel C et al. Spirometry and airway reactivity in elite track and field athletes. Clin. J. Sport Med.7(4), 257–261 (1997).
  • Wilber RL, Rundell KW, Szmedra L, Jenkinson DM, Im J, Drake SD. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med. Sci. Sports Exerc.32(4), 732–737 (2000).
  • Karjalainen EM, Laitinen A, Sue-Chu M, Altraja A, Bjermer L, Laitinen LA. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am. J. Respir. Crit. Care Med.161(6), 2086–2091 (2000).
  • Hallstrand TS, Moody MW, Aitken ML, Henderson WR Jr. Airway immunopathology of asthma with exercise-induced bronchoconstriction. J. Allergy Clin. Immunol.116(3), 586–593 (2005).
  • Hallstrand TS, Moody MW, Wurfel MM, Schwartz LB, Henderson WR Jr, Aitken ML. Inflammatory basis of exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med.172(6), 679–686 (2005).
  • Gwynn RC. Risk factors for asthma in US adults: results from the 2000 Behavioral Risk Factor Surveillance System. J. Asthma41(1), 91–98 (2004).
  • Eisner MD, Yelin EH, Trupin L, Blanc PD. Asthma and smoking status in a population-based study of California adults. Public Health Rep.116(2), 148–157 (2001).
  • Piipari R, Jaakkola JJ, Jaakkola N, Jaakkola MS. Smoking and asthma in adults. Eur. Respir. J.24(5), 734–739 (2004).
  • Troisi RJ, Speizer FE, Rosner B, Trichopoulos D, Willett WC. Cigarette smoking and incidence of chronic bronchitis and asthma in women. Chest108(6), 1557–1561 (1995).
  • Nadel JA, Comroe JH Jr. Acute effects of inhalation of cigarette smoke on airway conductance. J. Appl. Physiol.16, 713–716 (1961).
  • Lange P, Parner J, Vestbo J et al. A 15-year follow-up study of ventilation function in adults with asthma. N. Engl. J. Med.339(17), 1194–1200 (1998).
  • Apostol GG, Jacobs DR Jr, Tsai AW et al. Early life factors contribute to the decrease in lung function between ages 18 and 40: the Coronary Artery Risk Development in Young Adults study. Am. J. Respir. Crit. Care Med.166(2), 166–172 (2002).
  • Chalmers GW, MacLeod KJ, Thomson L, Little SA, McSharry C, Thomson NC. Smoking and airway inflammation in patients with mild asthma. Chest120(6), 1917–1922 (2001).
  • Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax57(3), 226–230 (2002).
  • Sunyer J, Springer G, Jamieson B et al. Effects of asthma on cell components in peripheral blood among smokers and non-smokers. Clin. Exp. Allergy33(11), 1500–1505 (2003).
  • Verleden GM, Dupont LJ, Verpeut AC, Demedts MG. The effect of cigarette smoking on exhaled nitric oxide in mild steroid-naive asthmatics. Chest116(1), 59–64 (1999).
  • Kerstjens HA, Overbeek SE, Schouten JP, Brand PL, Postma DS. Airways hyperresponsiveness, bronchodilator response, allergy and smoking predict improvement in FEV1 during long-term inhaled corticosteroid treatment. Dutch CNSLD Study Group. Eur. Respir. J.6(6), 868–876 (1993).
  • Chaudhuri R, Livingston E, McMahon AD, Thomson L, Borland W, Thomson NC. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am. J. Respir. Crit. Care Med.168(11), 1308–1311 (2003).
  • Lazarus SC, Chinchilli VM, Rollings NJ et al.; National Heart Lung and Blood Institute’s Asthma Clinical Research Network. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am. J. Respir. Crit. Care Med.175(8), 783–790 (2007).
  • Simpson JL, Scott RJ, Boyle MJ, Gibson PG. Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am. J. Respir. Crit. Care Med.172(5), 559–565 (2005).
  • Brightling CE. Clinical applications of induced sputum. Chest129(5), 1344–1348 (2006).
  • Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am. J. Respir. Crit. Care Med.164(8 Pt 1), 1376–1381 (2001).
  • Green RH, Brightling CE, McKenna S et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet360(9347), 1715–1721 (2002).
  • Gibson PG, Simpson JL, Hankin R, Powell H, Henry RL. Relationship between induced sputum eosinophils and the clinical pattern of childhood asthma. Thorax58(2), 116–121 (2003).
  • Haldar P, Pavord ID, Shaw DE et al. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med.178(3), 218–224 (2008).
  • Pizzichini MM, Pizzichini E, Clelland L et al. Prednisone-dependent asthma: inflammatory indices in induced sputum. Eur. Respir. J.13(1), 15–21 (1999).
  • Jatakanon A, Lim S, Barnes PJ. Changes in sputum eosinophils predict loss of asthma control. Am. J. Respir. Crit. Care Med.161(1), 64–72 (2000).
  • Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest119(5), 1329–1336 (2001).
  • Djukanović R, Wilson JW, Britten KM et al. Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am. Rev. Respir. Dis.145(3), 669–674 (1992).
  • Maestrelli P, Saetta M, Di Stefano A et al. Comparison of leukocyte counts in sputum, bronchial biopsies, and bronchoalveolar lavage. Am. J. Respir. Crit. Care Med.152(6 Pt 1), 1926–1931 (1995).
  • Grootendorst DC, Sont JK, Willems LN et al. Comparison of inflammatory cell counts in asthma: induced sputum vs bronchoalveolar lavage and bronchial biopsies. Clin. Exp. Allergy27(7), 769–779 (1997).
  • Chu HW, Balzar S, Seedorf GJ et al. Transforming growth factor-β2 induces bronchial epithelial mucin expression in asthma. Am. J. Pathol.165(4), 1097–1106 (2004).
  • Balzar S, Chu HW, Silkoff P et al. Increased TGF-β2 in severe asthma with eosinophilia. J. Allergy Clin. Immunol.115(1), 110–117 (2005).
  • Shin HD, Kim LH, Park BL et al. Association of eotaxin gene family with asthma and serum total IgE. Hum. Mol. Genet.12(11), 1279–1285 (2003).
  • Chae SC, Lee YC, Park YR et al. Analysis of the polymorphisms in eotaxin gene family and their association with asthma, IgE, and eosinophil. Biochem. Biophys. Res. Commun.320(1), 131–137 (2004).
  • Raby BA, Van Steen K, Lazarus R, Celedón JC, Silverman EK, Weiss ST. Eotaxin polymorphisms and serum total IgE levels in children with asthma. J. Allergy Clin. Immunol.117(2), 298–305 (2006).
  • Batra J, Rajpoot R, Ahluwalia J et al. A hexanucleotide repeat upstream of eotaxin gene promoter is associated with asthma, serum total IgE and plasma eotaxin levels. J. Med. Genet.44(6), 397–403 (2007).
  • Gudbjartsson DF, Bjornsdottir US, Halapi E et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet.41(3), 342–347 (2009).
  • Jayaram L, Pizzichini MM, Cook RJ et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur. Respir. J.27(3), 483–494 (2006).
  • Petsky HL, Kynaston JA, Turner C et al. Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev.2, CD005603 (2007).
  • ten Brinke A, Zwinderman AH, Sterk PJ, Rabe KF, Bel EH. ‘Refractory’ eosinophilic airway inflammation in severe asthma: effect of parenteral corticosteroids. Am. J. Respir. Crit. Care Med.170(6), 601–605 (2004).
  • Zacharasiewicz A, Wilson N, Lex C et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am. J. Respir. Crit. Care Med.171(10), 1077–1082 (2005).
  • Leckie MJ, ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356(9248), 2144–2148 (2000).
  • Flood-Page P, Swenson C, Faiferman I et al.; International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med.176(11), 1062–1071 (2007).
  • Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J. Allergy Clin. Immunol.119(5), 1043–1052 (2007).
  • Drews AC, Pizzichini MM, Pizzichini E et al. Neutrophilic airway inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy64(11), 1597–1601 (2009).
  • Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care Med.160(5 Pt 1), 1532–1539 (1999).
  • Lovett CJ, Whitehead BF, Gibson PG. Eosinophilic airway inflammation and the prognosis of childhood asthma. Clin. Exp. Allergy37(11), 1594–1601 (2007).
  • Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J. Allergy Clin. Immunol.112(6), 1064–1071 (2003).
  • Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. J. Allergy Clin. Immunol.111(6), 1345–1352 (2003).
  • Sur S, Crotty TB, Kephart GM et al. Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am. Rev. Respir. Dis.148(3), 713–719 (1993).
  • James AL, Elliot JG, Abramson MJ, Walters EH. Time to death, airway wall inflammation and remodeling in fatal asthma. Eur. Respir. J.26(3), 429–434 (2005).
  • Shiang C, Mauad T, Senhorini A et al. Pulmonary periarterial inflammation in fatal asthma. Clin. Exp. Allergy39(10), 1499–1507 (2009).
  • Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur. Respir. J.24(5), 822–833 (2004).
  • Zhang JJ, McCreanor JE, Cullinan P et al. Health effects of real-world exposure to diesel exhaust in persons with asthma. Res. Rep. Health Eff. Inst.138, 5–109 (2009).
  • Wark PA, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur. Respir. J.19(1), 68–75 (2002).
  • Turner MO, Hussack P, Sears MR, Dolovich J, Hargreave FE. Exacerbations of asthma without sputum eosinophilia. Thorax50(10), 1057–1061 (1995).
  • Fahy JV, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol.95(4), 843–852 (1995).
  • Ordoñez CL, Shaughnessy TE, Matthay MA, Fahy JV. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: clinical and biologic significance. Am. J. Respir. Crit. Care Med.161(4 Pt 1), 1185–1190 (2000).
  • Fabbri LM, Boschetto P, Zocca E et al. Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am. Rev. Respir. Dis.136(1), 36–42 (1987).
  • Nguyen LT, Lim S, Oates T, Chung KF. Increase in airway neutrophils after oral but not inhaled corticosteroid therapy in mild asthma. Respir. Med.99(2), 200–207 (2005).
  • Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, Martin RJ. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am. J. Respir. Crit. Care Med.156(3 Pt 1), 737–743 (1997).
  • Kikuchi S, Kikuchi I, Takaku Y et al. Neutrophilic inflammation and CXC chemokines in patients with refractory asthma. Int. Arch. Allergy Immunol.149(Suppl. 1), 87–93 (2009).
  • Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc. Am. Thorac. Soc.6(3), 256–259 (2009).
  • Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax62(3), 211–218 (2007).
  • Hauk PJ, Krawiec M, Murphy J et al. Neutrophilic airway inflammation and association with bacterial lipopolysaccharide in children with asthma and wheezing. Pediatr. Pulmonol.43(9), 916–923 (2008).
  • Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. J. Respir. Crit. Care Med.177(2), 148–155 (2008).
  • Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am. J. Respir. Crit. Care Med.167(10), 1360–1368 (2003).
  • Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol.117(6), 1277–1284 (2006).
  • Slats AM, Janssen K, van Schadewijk A et al. Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.176(2), 121–128 (2007).
  • Rosi E, Ronchi MC, Grazzini M, Duranti R, Scano G. Sputum analysis, bronchial hyperresponsiveness, and airway function in asthma: results of a factor analysis. J. Allergy Clin. Immunol.103(2 Pt 1), 232–237 (1999).
  • Moore WC, Meyers DA, Li H, D’Agostino R, Peters SP, Bleecker ER. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Presented at: 2009 American Thoracic Society International Conference. San Diego, CA, USA, 15–20 May 2009. Am. J. Respir. Crit. Care Med. (2009) (Epub ahead of print).

Website

  • Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2006. Bethesda: National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, MD, USA (2006) www.ginasthma.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.