42
Views
7
CrossRef citations to date
0
Altmetric
Review

Translational therapies for malignant pleural mesothelioma

, , , &
Pages 249-260 | Published online: 09 Jan 2014

References

  • Pisick E, Salgia R. Molecular biology of malignant mesothelioma: a review. Hematol. Oncol. Clin. North Am.19(6), 997–1023 (2005).
  • Attanoos RL, Gibbs AR. Pathology of malignant mesothelioma. Histopathology30(5), 403–418 (1997).
  • Cacciotti P, Barbone D, Porta C et al. SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res.65(12), 5256–5262 (2005).
  • Kroczynska B, Cutrone R, Boccetta M et al. Crocidolite asbestos and SV40 are cocarcinogens in human mesothelioma cells and causing mesothelioma in hamsters. Proc. Natl Acad. Sci. USA103(38), 14128–14133 (2006).
  • Cristaudo A, Foddis R, Vivaldi A et al. SV40 enhances the risk of malignant mesothelioma among people exposed to asbestos: a molecular epidemiologic case–control study. Cancer Res.65(8), 3049–3052 (2005).
  • De Luca A, Baldi A, Esposito V et al. The retinoblastoma gene family pRb/p105, p107, pRb2/p130 and simian virus-40 large T-antigen in human mesotheliomas. Nat. Med.3(8), 913–916 (1997).
  • Bocchetta M, Eliasz S, De Marco MA, Rudzinski J, Zhang L, Carbone M. The SV40 large T antigen–p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth. Cancer Res.68(4), 1022–1029 (2008).
  • Janne PA. Chemotherapy for malignant pleural mesothelioma. Clin. Lung Cancer5(2), 98–106 (2003).
  • Ramos-Nino M, Timblin C, Mossman B. Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res.62(21), 6065–6069 (2002).
  • Yang H, Bocchetta M, Kroczynska B et al. TNF-α inhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis Proc. Natl Acad. Sci. USA103(27), 10397–10402 (2006).
  • Xu A, Zhou H, Yu DZ, Hei TK. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species. Environ. Health Perspect.110(10), 1003–1008 (2002).
  • Weder W, Stahel RA, Bernhard J et al. Multicenter trial of neo-adjuvant chemotherapy followed by extrapleural pneumonectomy in malignant pleural mesothelioma. Ann. Oncol.18(7), 1196–1202 (2007).
  • Scagliotti GV, Shin DM, Kindler HL et al. Phase II study of pemetrexed with and without folic acid and vitamin B12 as front-line therapy in malignant pleural mesothelioma. J. Clin. Oncol.21(8), 1556–1561 (2003).
  • Tomek S, Emri S, Krejcy K, Manegold C. Chemotherapy for malignant pleural mesothelioma: past results and recent development. Br. J. Cancer88(2), 167–174 (2003).
  • Berghmans T, Paesmans M, Lalami Y et al. Activity of chemotherapy and immunotherapy on malignant mesothelioma: a systematic review of the literature with meta-analysis. Lung Cancer38(2), 111–121 (2002).
  • Fennell DA, Gaudino G, O’Byrne KJ et al. Advances in the systemic therapy of malignant pleural mesothelioma. Nat. Clin. Pract. Oncol.5(3), 136–147 (2008).
  • Vogelzang NJ, Rusthoven JJ, Symanowski J et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol.21(14), 2636–2644 (2003).
  • van Meerbeeck JP, Gaafar R, Manegold C et al. Randomized Phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer group and the National Cancer Institute of Canada. J. Clin. Oncol.23(28), 6881–6889 (2005).
  • Ceresoli GL, Zucali PA, Favaretto AG et al. Phase II study of pemetrexed plus carboplatin in malignant pleural mesothelioma. J. Clin. Oncol.24(9), 1443–1448 (2006).
  • Castagneto B, Botta M, Aitini E et al. Phase II study of pemetrexed in combination with carboplatin in patients with malignant pleural mesothelioma (MPM). Ann. Oncol.19(2), 370–373 (2008).
  • Kratzke RA, Otterson GA, Lincoln CE et al. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J. Natl Cancer Inst.87(24), 1870–1875 (1995).
  • Papp T, Schipper H, Pemsel H et al. Mutational analysis of N-ras, p53, p16INK4a, p14ARF and CDK4 genes in primary human malignant mesothelioma. Int. J. Oncol.18(2), 425–433 (2001).
  • Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin. Oncol.29(1), 2–17 (2002).
  • Procopio A, Marinacci R, Marinetti MR et al. SV40 expression in human neoplastic and non-neoplastic tissues: perspectives on diagnosis, prognosis and therapy of human malignant mesothelioma. Dev. Biol. Stand.94, 361–367 (1998).
  • Manfredi JJ, Dong J, Liu WJ et al. Evidence against a role for SV40 in human mesothelioma. Cancer Res.65(7), 2602–2609 (2005).
  • Prins JB, Williamson KA, Kamp MM et al. The gene for the cyclin-dependent-kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int. J. Cancer75(4), 649–653 (1998).
  • Cheng JQ, Jhanwar SC, Klein WM et al. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res.54(21), 5547–5551 (1994).
  • Hirao T, Bueno R, Chen CJ, Gordon GJ, Heilig E, Kelsey KT. Alterations of the p16(INK4) locus in human malignant mesothelial tumors. Carcinogenesis23(7), 1127–1130 (2002).
  • Murthy SS, Testa JR. Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J. Cell. Physiol.180(2), 150–157 (1999).
  • Wong L, Zhou J, Anderson D, Kratzke RA. Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer38(2), 131–136 (2002).
  • López-Ríos F, Chuai S, Flores R et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res.66(6), 2970–2979 (2006).
  • Lowe SW, Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13(1), 77–83 (2003).
  • Yang CT, You L, Yeh CC et al. Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. J. Natl Cancer Inst.92(8), 636–641 (2000).
  • Rippo MR, Moretti S, Vescovi S et al. FLIP overexpression inhibits death receptor-induced apoptosis in malignant mesothelioma cells. Oncogene23(47), 7753–7760 (2004).
  • Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem. Biophys. Res. Commun.304(3), 499–504 (2003).
  • Segers K, Ramael M, Singh SK et al. Immunoreactivity for Bcl-2 protein in malignant mesothelioma and non-neoplastic mesothelium. Virchows Arch.424(6), 631–634 (1994).
  • Narasimhan SR, Yang L, Gerwin BI, Broaddus VC. Resistance of pleural mesothelioma cell lines to apoptosis: relation to expression of Bcl-2 and Bax. Am. J. Physiol.275(1 Pt 1), L165–L171 (1998).
  • Soini Y, Pääkkö P. Apoptosis and expression of caspases 3, 6 and 8 in malignant non-Hodgkin’s lymphomas. APMIS107(11), 1043–1050 (1999).
  • Hopkins-Donaldson S, Cathomas R, Simões-Wüst AP et al. Induction of apoptosis and chemosensitization of mesothelioma cells by Bcl-2 and Bcl-xL antisense treatment. Int. J. Cancer106(2), 160–166 (2003).
  • Altieri DC. Cytokines, apoptosis, and survivin: three for tango. Cell Death Differ.8(1), 4–5 (2001).
  • Mesri M, Wall NR, Li J, Kim RW, Altieri DC. Cancer gene therapy using a survivin mutant adenovirus. J. Clin. Invest.108(7), 981–990 (2001).
  • Olie RA, Simoes-Wust AP, Baumann B et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res.60(11), 2805–2809 (2000).
  • Ishigami SI, Arii S, Furutani M et al. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer78(10), 1379–1384 (1998).
  • Edwards JG, Swinson DE, Jones JL, Muller S, Waller DA, O’Byrne KJ. Tumour necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest124(5), 1916–1923 (2003).
  • Edwards JG, Cox G, Andi A et al. Angiogenesis is an independent prognostic factor in malignant mesothelioma. Br. J. Cancer85(6), 863–868 (2001).
  • Kumar-Singh S, Vermeulen PB, Weyler J et al. Evaluation of tumour angiogenesis as a prognostic marker in malignant mesothelioma. J. Pathol.182(2), 211–216 (1997).
  • Demirag F, Unsal E, Yilmaz A, Caglar A. Prognostic significance of vascular endothelial growth factor, tumor necrosis, and mitotic activity index in malignant pleural mesothelioma Chest128(5), 3382–3387 (2005).
  • Weyn B, Tjalma WA, Vermeylen P, van Daele A, Van Marck E, Jacob W. Determination of tumour prognosis based on angiogenesis-related vascular patterns measured by fractal and syntactic structure analysis. Clin. Oncol. (R. Coll. Radiol.)16(4), 307–316 (2004).
  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J.13(1), 9–22 (1999).
  • Strizzi L, Catalano A, Vianale G et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J. Pathol.93(4), 468–475 (2001).
  • Masood R, Kundra A, Zhu S et al. Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int. J. Cancer104(5), 603–610 (2003).
  • Kumar-Singh S, Weyler J, Martin MJH, Vermeulen PB, Van Marck E. Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF β expression. J. Pathol.189(1), 72–78 (1999).
  • Ohta Y, Shridhar V, Bright RK et al. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br. J. Cancer81(1), 54–61 (1999).
  • O’Byrne KJ, Edwards JG, Waller DA. Clinico-pathological and biological prognostic factors in pleural malignant mesothelioma. Lung Cancer45(Suppl. 1), S45–S48 (2004).
  • Catalano A, Romano M, Martinetti S, Procopio A. Enhanced expression of vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression potential induced by simian virus 40 large T antigen. Oncogene21(18), 2896–2900 (2002).
  • Langerak AW, van der Linden-van Beurden CA, Vesnel MA. Regulation of differential expression of platelet-derived growth factor α and β-receptor mRNA in normal and malignant human mesothelial cell lines. Biochim. Biophys. Acta1305(1–2), 63–70 (1996).
  • Pogrebniak HW, Lubensky IA, Pass HI. Differential expression of platelet derived growth factor-β in malignant mesothelioma: a clue to future therapies? Surg. Oncol.2(4), 235–240 (1993).
  • Klominek J, Baskin B, Hauzenberger D. Platelet-derived growth factor (PDGF) BB act as a chemoattractant for human malignant mesothelioma cells via PDGF receptor β-integrin α3β1 interaction. Clin. Exp. Metastasis16(6), 529–539 (1998).
  • Roberts F, Harper CM, Downie I, Burnett RA. Immunohistochemical analysis still has a limited role in the diagnosis of malignant mesothelioma. A study of thirteen antibodies. Am. J. Clin. Pathol.116(2), 253–262 (2001).
  • Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene24(50), 6080–6089 (2005).
  • Pietras K, Ostman A, Sjoquist M et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res.61(7), 2929–2934 (2001).
  • Pietras K, Rubin K, Sjöblom T et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res.62(19), 5476–5484 (2002).
  • Pietras K, Stumm M, Hubert M et al. STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin. Cancer Res.9(10 Pt 1), 3779–3787 (2003).
  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.273(23), 14484–14494 (1998).
  • Dazzi H, Hasleton PS, Thatcher N, Wilkes S, Swindell R, Chatterjee AK. Malignant pleural mesothelioma and epidermal growth factor receptor (EGF-R). Relationship of EGF-R with histology and survival using fixed paraffin embedded tissue and the F4, monoclonal antibody. Br. J. Cancer61(6), 924–926 (1990).
  • Edwards JG, Swinson DE, Jones JL, Waller DA, O’Byrne KJ. EGFR expression: associations with outcome and clinicopathological variables in malignant pleural mesothelioma. Lung Cancer54(3), 399–407 (2006).
  • Govindan R, Kratzke RA, Herndon JE et al. Gefitinib in patients with malignant mesothelioma (MM): a Phase II study by the Cancer and Leukemia Group B (CALGB 30101). Proc. Am. Soc. Clin. Oncol.22, 630; abstract 2535 (2003).
  • Comoglio PM, Boccaccio C. The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes Cells1(4), 347–354 (1996).
  • Maestrini E, Tamagnone L, Longati P et al. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc. Natl Acad. Sci. USA93(2), 674–678 (1996).
  • Abella JV, Peschard P, Naujokas MA et al. Met/hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell Biol.25(21), 9632–9645 (2005).
  • Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev.27(1), 85–94 (2008).
  • Graziani A, Gramaglia D, Cantley LC, Comoglio PM. The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J. Biol. Chem.266(33), 22087–22090 (1991).
  • Boccaccio C, Andò M, Tamagnone L et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature391(6664), 285–288 (1998).
  • O’Brien LE, Tang K, Kats ES et al. ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Dev. Cell7(1), 21–32 (2004).
  • Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80(2), 179–185 (1995).
  • van der Voort R, Taher TE, Wielenga VJ et al. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J. Biol. Chem.274(10), 6499–6506 (1999).
  • Furge KA, Kiewlich D, Le P et al. Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. Proc. Natl Acad. Sci. USA98(19), 10722–10727 (2001).
  • Moghul A, Lin L, Beedle A et al. Modulation of c-MET proto-oncogene (HGF receptor) mRNA abundance by cytokines and hormones: evidence for rapid decay of the 8 kb c-MET transcript. Oncogene9(7), 2045–2052 (1994).
  • Jagadeeswaran R, Ma PC, Seiwert TY et al. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res.66(1), 352–361 (2006).
  • Roff M, Thompson J, Rodriguez MS et al. Role of IκBα ubiquitination in signal-induced activation of NF-7kgr;B in vivo. J. Biol. Chem.271(13), 7844–7850 (1996).
  • An B, Goldfarb RH, Simian R, Dou QP. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induces apoptosis in transformed, but not normal, human fibroblast. Cell Death Differ.5(12), 1062–1075 (1998).
  • Miska EA. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev.15(5), 563–568 (2005).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Guo Y, Chen Z, Zhang L et al. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res.68(1), 26–33 (2008).
  • Busacca S, Germano S, De Cecco L et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am. J. Respir. Cell Mol. Biol.42(3), 312–319 (2009).
  • Guled M, Lahti L, Lindholm PM et al.CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma. A miRNA microarray analysis. Genes Chromosomes Cancer48(7), 615–623 (2009).
  • Kindler HL, Karrison T, Lu C et al. A multicenter, double-blind, placebo-controlled randomized Phase II trial of gemcitabine/cisplatin (GC) plus bevacizumab (B) or placebo in patients (pts) with malignant mesothelioma (MM). Proc. Am. Soc. Clin. Oncol.23(16S), 7019 (2005).
  • Jackman DM, Kindler HL, Yeap BY et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer113(4) 808–814 (2008).
  • Petit AM, Rak J, Hung MC et al. Neutralizing antibodies against epidermal growth factor and ErbB2-neu receptor tyrosine kinase downregulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. Am. J. Pathol.151(6) 1523–1530 (1997).
  • Ciardiello F, Caputo R, Damiano V et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res.9(4), 1546–1556 (2003).
  • Herbst RS, Mininberg E, Henderson T et al. Phase I/II trial evaluating blockade of tumor blood supply and tumor cell proliferation with combined bevacizumab and erlotinib HCl as targeted cancer therapy in patients with recurrent non-small cell lung cancer. Eur. J. Cancer1, S293 (2003).
  • Kindler HL, Vogelzang NJ, Chien K et al. SU5416 in malignant mesothelioma: a Univeristy of Chicago Phase II consortium study. Proc. Am. Soc. Clin. Oncol.20, 1359 (2001).
  • Kuenen BC, Rosen L, Smit EF et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol.20(6), 1657–1667 (2002).
  • Nowak AK, Millward MJ, Francis R, Schaaf A, Musk AW, Byrne MJ. Phase II study of sunitinib as second-line therapy in malignant pleural mesothelioma (MPM). J. Clin. Oncol.26(439S), 8063 (2008).
  • Bold G, Altmann KH, Frei J et al. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J. Med. Chem.43(16), 2310–2323 (2000).
  • Jahan TM, Gu L, Wang X et al. Vatalanib (V) for patients with previously untreated advanced malignant mesothelioma (MM): a Phase II study by the Cancer and Leukemia group B (CALGB30107). Proc. Am. Soc. Clin. Oncol.24(18S), 7081 (2006).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64(19), 7099–7109 (2004).
  • Janne PA, Wang XF, Krug LM, Hodgson L, Vokes EE, Kindler HL. Sorafenib in malignant mesothelioma (MM): a Phase II trial of the Cancer and Leukemia Group (CALGB 30307). J. Clin. Oncol.25(435S), 7707 (2007).
  • Baas P, Boogerd W, Dalesio O, Haringhuizen A, Custers F, van Zandwijk N. Thalidomide in patients with malignant pleural mesothelioma. Lung Cancer48(2), 291–296 (2005).
  • Pavlakis N, Abraham R, Harvie R et al. Thalidomide alone or in combination with cisplatin/gemcitabine in malignant pleural mesothelioma: interim results from two parallel non randomized Phase II studies. Lung Cancer41(Suppl. 2), S11 (2003).
  • Millward M, Parnis F, Byrne M et al. Phase II trial of imatinib mesylate in patients with advanced pleural mesothelioma. Proc. Am. Soc. Clin. Oncol.22, 912 (2003).
  • Villano J, Husain AN, Stadler WM et al. A Phase II trial of imatinib mesylate in patients (pts) with malignant mesothelioma (MM). J. Clin. Oncol.22(Suppl.), 7200 (2004).
  • Mathy A, Baas P, Dalesio O et al. Limited efficacy of imatinib mesylate in malignant mesothelioma: a Phase II trial. Lung Cancer50(1), 83–86 (2005).
  • Porta C, Mutti L, Tassi, G. Negative results of an Italian group for mesothelioma (G.I.Me.). Pilot study of single-agent imatinib mesylate in malignant pleural mesothelioma. Cancer Chemother. Pharmacol.59(1), 149–150 (2007).
  • Bertino P, Porta C, Barbone D et al. Preliminary data suggestive of a novel translational approach to mesothelioma treatment: imatinib mesylate with gemcitabine or pemetrexed. Thorax62(8), 690–695 (2007).
  • Jänne PA, Taffaro ML, Salgia R et al. Inhibition of epidermal growth factor receptor signaling in malignant pleural mesothelioma. Cancer Res.62(18), 5242–5247 (2002).
  • Garland L, Rankin C, Scott K et al. Phase II study of erlotinib in patients with malignant pleural mesothelioma: a Southwest Oncology Group Study. J. Clin. Oncol.25(17), 2406–2413 (2007).
  • Cortese JF, Gowda AL, Wali A, Eliason JF, Pass HI, Everson RB. Common EGFR mutations conferring sensitivity to gefitinib in lung adenocarcinoma are not prevalent in human malignant mesothelioma. Int. J. Cancer118(2), 521–522 (2006).
  • Mikulski SM, Costanzi JJ, Vogelzang NJ et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J. Clin. Oncol.20(1), 274–281 (2002).
  • Vogelzang N, Taub R, Shin D et al. Phase III randomized trial of onconase (ONC) vs. doxorubicin (DOX) in patients (Pts) with unresectable malignant mesothelioma (UMM): analysis of survival. Proc. Am. Soc. Clin. Oncol.19(577A), 2274 (2000).
  • Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin. Cancer Res.10(12 Pt 1), 3937–3942 (2004).
  • Hassan R, Bullock S, Premkumar A et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin. Cancer Res.13(17), 5144–5149 (2007).
  • Zhang Y, Xiang L, Hassan R et al. Synergistic antitumor activity of taxol and immunotoxin SS1P in tumor-bearing mice. Clin. Cancer Res.12(15), 4695–4701 (2006).
  • Gordon GJ, Mani M, Maulik G et al. Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother. Pharmacol.61(4), 549–558 (2008).
  • Rusch VW, Rosenzweig K, Venkatraman E et al. A Phase II trial of surgical resection and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg.22(4), 788–795 (2001).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.