130
Views
11
CrossRef citations to date
0
Altmetric
Perspective

Boosting BCG to protect against TB

&
Pages 339-348 | Published online: 09 Jan 2014

References

  • World Health Organization. Global tuberculosis control 2009: epidemiology, strategy, financing. WHO Report WHO/HTM/TB/2009.411. WHO, Geneva, Switzerland (2009).
  • Zignol M, Hosseini MS, Wright A et al. Global incidence of multidrug-resistant tuberculosis. J. Infect. Dis.194(4), 479–485 (2006).
  • Shah NS, Wright A, Bai GH et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis.13(3), 380–387 (2007).
  • Center for Disease Control and Prevention. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. MMWR Morb. Mortal. Wkly Rep.55(11), 301–305 (2006).
  • Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect. Dis.9(1), 19–30 (2009).
  • Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nat. Rev. Immunol.5(10), 819–826 (2005).
  • Daley CL, Small PM, Schecter GF et al. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus: an analysis using restriction-fragment-length polymorphisms. N. Engl. J. Med.326(4), 231–235 (1992).
  • Narita M, Ashkin D, Hollender ES, Pitchenik AE. Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am. J. Respir. Crit. Care Med.158(1), 157–161 (1998).
  • Calmette A. La Vaccination Préventive Contre la Tuberculose. Masson et Cie, Paris, France, 250 (1927).
  • World Health Organization. BCG vaccine. WHO position paper. Wkly Epidemiol. Rec.79(4), 27–38 (2004).
  • Colditz JA, Brewer TF, Berkey CS et al. Efficacy of BCG vaccine in the prevention of tuberculosis. JAMA271(9), 698–702 (1994).
  • Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284(5419), 1520–1523 (1999).
  • Brandt L, Feino Cunha J, Weinreich olsen A et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun.70(2), 672–678 (2002).
  • López B, Aguilar D, Orozco H et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol.133(1), 30–37 (2003).
  • Nicol MP, Wilkinson RJ. The clinical consequences of strain diversity in Mycobacteriumtuberculosis. Trans. R. Soc. Trop. Med. Hyg.102, 955–965 (2008).
  • Niemann S, Köser CU, Gagneux S et al. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One4(10), e7407 (2009).
  • Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitidis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost effectiveness. Lancet367(9517), 1173–1180 (2006).
  • Orme I. The use of animal models to guide rational vaccine design. Microbes Infect.7(5–6), 905–910 (2005).
  • Dharmadhikari AS, Nardell EA. What animal models teach humans about tuberculosis. Am. J. Respir. Cell Mol. Biol.39(5), 503–508 (2008).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus Calmette–Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl Acad. Sci. USA97(25), 13853–13858 (2000).
  • Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect. Immun.71(4), 1672–1679 (2003).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Extraordinarily few organisms of a live recombinant BCG vaccine against tuberculosis induce maximal cell-mediated and protective immunity. Vaccine24(10), 443–451 (2006).
  • Hoft DF, Blazevic A, Abate G et al. A new recombinant BCG vaccine safely induces significantly enhanced TB-specific immunity in human volunteers. J. Infect. Dis.198(10), 1491–1501 (2008).
  • Tullius MV, Harth G, Maslesa-Galic S, Dillon BJ, Horwitz MA. A replication-limited recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect. Immun.76(11), 5200–5214 (2008).
  • Jain R, Dey B, Dhar N et al. Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung. PLoS One3(12), e3869 (2008).
  • Sugawara I, Udagawa T, Taniyama T. Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A. Tuberculosis87(2), 94–101 (2007).
  • Sugawara I, Li Z, Sun L, Udagawa T, Taniyama T. Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys ( Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis. Tuberculosis87(6), 518–525 (2007).
  • Sugawara I, Sun L, Mizuno S, Taniyama T. Protective efficacy of recombinant BCG Tokyo (Ag85A) in rhesus monkeys ( Macaca mulatta) infected intratracheally with H37Rv Mycobacterium tuberculosis. Tuberculosis89(1), 62–67 (2009).
  • Palendira U, Spratt JM, Britton WJ, Triccas JA. Expanding the antigenic repertoire of BCG improves protective efficacy against aerosol Mycobacterium tuberculosis infection. Vaccine23(14), 1680–1685 (2005).
  • Xu Y, Zhu B, Wang Q et al. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice. FEMS Immunol. Med. Microbiol.51(3), 480–487 (2007).
  • Qie YQ, Wan JL, Zhu BD et al. Evaluation of a new recombinant BCG which contains mycobacterial antigen ag85B-mpt64190–198-mtb8.4 in C57/BL6 mice. Scand. J. Immunol.67(2), 133–139 (2008).
  • Wang J, Qie Y, Zhu B et al. Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice. Med. Microbiol. Immunol.198(1), 5–11 (2009).
  • Tang CE, Yamada H, Shibata K et al. Efficacy of recombinant Bacille Calmette–Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J. Infect. Dis.197(9), 1263–1274 (2008).
  • Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol.46(3), 709–717 (2002).
  • Pym AS, Brodin P, Majlessi L et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med.9(5), 533–539 (2003).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guérin mutants that secrete listeriolysin. J. Clin. Invest.115(9), 2472–2479 (2005).
  • Tchilian EZ, Desel C, Forbes EK et al. Immunogenicity and protective efficacy of prime–boost regimens with recombinant DureC hly+Mycobacterium bovis BCG and modified vaccinia virus Ankara expressing M. tuberculosis antigen 85A against murine tuberculosis. Infect. Immun.77(2), 622–631 (2009).
  • Sun R, Skeiky YAW, Izzo A, Dheenadhayalan V, Imam Z, Penn E. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine27(33), 4412–4423 (2009).
  • Martin C, Williams A, Hernandez-Pando R et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine24(17), 3408–3419 (2006).
  • Aguilar D, Infante E, Martin C, Gormley E, Gicquel B, Hernandez Pando R. Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis ( phoP) SO2 strain. Clin. Exp. Immunol.147(2), 330–338 (2007).
  • Sambandamurthy VK, Derrick SC, Hsu T et al. Mycobacterium tuberculosis ΔRD1 ΔpanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine24(37–39), 6309–6320 (2006).
  • Sambandamurthy VK, Derrick ST, Jalapathy KV et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect. Immun.73(2), 1196–1203 (2005).
  • Larsen MH, Biermann K, Chen B et al. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in nonhuman primates. Vaccine27(34), 4709–4717 (2009).
  • Jackson M, Phalen SW, Lagranderie M et al. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect. Immun.67(6), 2867–2873 (1999).
  • Basaraba RJ, Izzo AA, Brandt L, Orme IM. Decreased survival of guinea pigs infected with Mycobacterium tuberculosis after multiple BCG vaccinations. Vaccine24(3), 280–286 (2006).
  • Buddle BM, Wedlock DN, Parlane NA, Corner LA, De Lisle GW, Skinner MA. Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination. Infect. Immun.71(11), 6411–6419 (2003).
  • World Health Organization. Expanded program of immunization, 1995. Immunization schedules in the WHO European region. Wkly Epidemiol. Rec.70(31), 221–227 (1995).
  • Tala-Heikkila MM, Tuominen JE, Tala EOJ. Bacillus Calmette–Guérin revaccination questionable with low tuberculosis incidence. Am. J. Respir. Crit. Care Med.157(4 Pt 1), 1324–1327 (1998).
  • Karonga Prevention Trial Group. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet348(9019), 17–24 (1996).
  • Rodrigues LC, Pereira SM, Cunha SS et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG–REVAC cluster randomised trial. Lancet366(9493), 1290–1295 (2005).
  • McConkey SJ, Reece WHH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccine boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med.9(6), 729–735 (2003).
  • Menozzi FD, Rouse JH, Alavi M et al. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med.184(3), 993–1001 (1996).
  • Pethe K, Alonso S, Biet F et al. The heparin-binding haemagglutinin of Mycobacterium tuberculosis is required for extrapulmonary dissemination. Nature412(6843), 190–194 (2001).
  • Masungi C, Temmerman S, Van Vooren JP et al. Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J. Infect. Dis.185(4), 513–520 (2002).
  • Temmerman S, Pethe K, Parra M et al. Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat. Med.10(9), 935–941 (2004).
  • Temmerman ST, Place S, Debrie AS, Locht C, Mascart F. Effector functions of heparin binding hemagglutinin-specific CD8+ T lymphocytes in latent human tuberculosis. J. Infect. Dis.192(2), 226–232 (2005).
  • Hougardy JM, Schepers K, Place S et al. Heparin-binding hemagglutinin induced IFN-γ release as a diagnostic tool for latent tuberculosis. PLoS One2(10), e926 (2007).
  • Locht C, Hougardy JM, Rouanet C, Place S, Mascart F. Heparin-binding hemagglutinin, from an extrapulmonary dissemination factor to a powerful diagnostic and protective antigen against tuberculosis. Tuberculosis86(3–4), 303–309 (2006).
  • Parra M, Pickett T, Delogu G et al. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect. Immun.72(12), 6799–6805 (2004).
  • Rahman MJ, Fernandez C. Neonatal vaccination with Mycobacterium bovis BCG: potential effects as a priming agent shown in a heterologous prime–boost immunization protocol. Vaccine27(30), 4038–4046 (2009).
  • Rouanet C, Debrie AS, Lecher S, Locht C. Subcutaneous boosting with heparin binding haemagglutinin increases BCG-induced protection against tuberculosis. Microbes Infect.11(13), 995–1001 (2009).
  • Doherty TM, Olsen AW, Van Pinxteren L, Andersen P. Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis. Infect. Immun.70(6), 3111–3121 (2002).
  • Doherty TM, Olsen AW, Weischenfeldt et al. Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis. J. Infect. Dis.190(12), 2146–2153 (2004).
  • Langermans JA, Doherty TM, Vervenne RA et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine23(21), 2740–2750 (2005).
  • Olsen AW, Van Pixteren LA, Okkels LM, Rasmussen PB, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect. Immun.69(5), 2773–2778 (2001).
  • Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun.72(10), 6148–6150 (2004).
  • Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guérin immunity. J. Immunol.177(9), 6353–6360 (2006).
  • Derrick S, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6–Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine23(6), 780–788 (2004).
  • Skjot RL, Brock I, Arend SM et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the ESAT-6 gene family. Infect. Immun.70(10), 5446–5453 (2002).
  • Duffy D, Dawoodji A, Agger EM, Andersen P, Westermann J, Bell EB. Immunological memory transferred with CD4 T cells specific for tuberculosis antigens Ag85B–TB10.4: persisting antigen enhances protection. PLoS One4(12), e8272 (2009).
  • Skeiky YAW, Dietrich J, Lasco TM et al. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime–boost regimen. Vaccine28(4), 1084–1093 (2010).
  • Brandt L, Skeiky YAW, Alderson MR et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun.24 72(11), 6622–6632 (2004).
  • Reed SG, Coler RN, Daleman W et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl Acad. Sci. USA.106(7), 2301–2306 (2009).
  • Mollenkopf HJ, Grode L, Mattow J et al. Application of mycobacterial proteomics to vaccine design: improved protection by Mycobacterium bovis BCG prime-RV3407 DNA boost vaccination against tuberculosis. Infect. Immun.72(11), 6471–6479 (2004).
  • Dou J, Tang Q, Yu F et al. Investigation of immunogenic effect of the BCG priming and Ag85A–GM-CSF boosting in Balb/c mice model. Immunobiology215(2), 133–142 (2010).
  • Luo Y, Wang B, Hu L et al. Fusion protein Ag85B-MPT64190–198-Mtb8.4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Vaccine27(44), 6179–6185 (2009).
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AVS. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of Bacille Calmette–Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol.171(3), 1602–1609 (2003).
  • Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis85(1–2), 29–38 (2005).
  • Williams A, Goonetilleke NP, McShane H et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun.73(6), 3814–3816 (2005).
  • Verreck FA, Vervenne RA, Kondova I et al. MVA.85A boosting of BCG and an attenuated phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One4(4), e5264 (2009).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med.10(12), 1240–1244 (2004).
  • Pathan AA, Sander CR, Fletcher HA et al. Boosting BCG with recombinant modified vaccinia Ankara expressing antigen 85A: Different boosting intervals and implications for efficacy trials. PLoS One2(10), e1052 (2007).
  • Brookes RH, Hill PC, Owiafe PK et al. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS One3(8), e2921 (2008).
  • Hawkridge T, Scribz TJ, Gelderbloem S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis.198(4), 544–552 (2008).
  • Whelan KT, Pathan AA, Sander CR et al. Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS One4(6), e5934 (2009).
  • Sander CR, Pathan AA, Beveridge NER et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am. J. Resp. Crit. Care Med.179(8), 724–733 (2009).
  • Xing Z, Lichty BD. Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis86(3–4), 211–217 (2006).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol.173(10), 6357–6365 (2004).
  • Xing Z, Santosuosso M, McCormick S et al. Recent advances in the development of adenovirus- and poxvirus-vectored tuberculosis vaccine. Curr. Gene Ther.5(5), 485–492 (2005).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacteriumbovis BCG immunization against pulmonary tuberculosis. Infect. Immun.74(8), 4634–4663 (2006).
  • Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One4(6), e5856 (2009).
  • Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174(12), 7986–7994 (2005).
  • Radosevic K, Wieland CW, Rodriguez A et al. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T cell epitope mapping and role of g interferon. Infect. Immun.75(8), 4105–4115 (2007).
  • Magalhaes I, Sizemore DR, Ahmed RK et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime–boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One3(11), e3790 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.