212
Views
82
CrossRef citations to date
0
Altmetric
Review

The physical basis of ventilator-induced lung injury

&
Pages 373-385 | Published online: 09 Jan 2014

References

  • Bernard GR, Artigas A, Brigham KL et al. The American–European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med.149(3 Pt 1), 818–824 (1994).
  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet2(7511), 319–323 (1967).
  • Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med.342(18), 1301–1308 (2000).
  • Brower RG, Lanken PN, MacIntyre N et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med.351(4), 327–336 (2004).
  • Steinberg KP, Hudson LD, Goodman RB et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N. Engl. J. Med.354(16), 1671–1684 (2006).
  • Phua J, Badia JR, Adhikari NK et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am. J. Respir. Crit. Care Med.179(3), 220–227 (2009).
  • Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest133(5), 1120–1127 (2008).
  • Greenfield LJ, Ebert PA, Benson DW. Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesiology25, 312–316 (1964).
  • Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med.157(1), 294–323 (1998).
  • Vlahakis NE, Hubmayr RD. Response of alveolar cells to mechanical stress. Curr. Opin. Crit. Care9(1), 2–8 (2003).
  • Vlahakis NE, Hubmayr RD. Cellular stress failure in ventilator-injured lungs. Am. J. Respir. Crit. Care Med.171(12), 1328–1342 (2005).
  • Gattinoni L, Pesenti A, Torresin A et al. Adult respiratory distress syndrome profiles by computed tomography. J. Thorac. Imag.3, 25–30 (1986).
  • Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J. Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA255(18), 2463–2465 (1986).
  • Gattinoni L, Pesenti A. ARDS: the non-homogeneous lung; facts and hypothesis. Intensive Crit. Care Dig.6, 1–4 (1987).
  • Gattinoni L, Pesenti A. The concept of ‘baby lung’. Intensive Care Med.31(6), 776–784 (2005).
  • Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure–volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am. Rev. Resp. Dis.136(3), 730–736 (1987).
  • Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Resp. Dis.137(5), 1159–1164 (1988).
  • Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med.164(9), 1701–1711 (2001).
  • Bone RC. The ARDS lung. New insights from computed tomography. JAMA269(16), 2134–2135 (1993).
  • Hubmayr RD. Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am. J. Respir. Crit. Care Med.165(12), 1647–1653 (2002).
  • Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD. Regional expansion of oleic acid-injured lungs. Am. J. Respir. Crit. Care Med.160(1), 250–258 (1999).
  • Smith JC, Stamenovic D. Surface forces in lungs. I. Alveolar surface tension-lung volume relationships. J. Appl. Physiol.60(4), 1341–1350 (1986).
  • Stamenovic D, Smith JC. Surface forces in lungs. III. Alveolar surface tension and elastic properties of lung parenchyma. J. Appl. Physiol.60(4), 1358–1362 (1986).
  • Stamenovic D, Smith JC. Surface forces in lungs. II. Microstructural mechanics and lung stability. J. Appl. Physiol.60(4), 1351–1357 (1986).
  • Wilson TA, Anafi RC, Hubmayr RD. Mechanics of edematous lungs. J. Appl. Physiol.90(6), 2088–2093 (2001).
  • Hubmayr RD. Another look at the opening and collapse story. Crit. Care Med.37(9), 2667–2668 (2009).
  • Mertens M, Tabuchi A, Meissner S et al. Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit. Care Med.37(9), 2604–2611 (2009).
  • Artigas A, Bernard GR, Carlet J et al. The American–European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.157(4 Pt 1), 1332–1347 (1998).
  • Spragg RG, Lewis JF. Pathology of the surfactant system of the mature lung: second San Diego conference. Am. J. Respir. Crit. Care Med.163(1), 280–282 (2001).
  • Cook CD, Mead J, Schreiner GL, Frank NR, Craig JM. Pulmonary mechanics during induced pulmonary edema in anesthetized dogs. J. Appl. Physiol.14(2), 177–186 (1959).
  • Delaunois L, Sergysels R, Martin RR. Acute effects on airways mechanics of pulmonary edema induced by intravenous oleic acid in dogs. Bull. Eur. Physiopathol. Respir.16(1), 47–55 (1980).
  • Frazer DG, Stengel PW, Weber KC. The effect of pulmonary edema on gas trapping in excised rat lungs. Resp. Physiol.38(3), 325–333 (1979).
  • Chung KF, Keyes SJ, Morgan BM, Jones PW, Snashall PD. Mechanisms of airway narrowing in acute pulmonary oedema in dogs: influence of the vagus and lung volume. Clin. Sci. (Lond.)65(3), 289–296 (1983).
  • Derks CM, D’Hollander AA, Jacobovitz-Derks D. Gas exchange and respiratory mechanics in moderate and severe pulmonary oedema in dogs. Bull. Eur. Physiopathol. Respir.17(2), 163–177 (1981).
  • Esbenshade AM, Newman JH, Lams PM, Jolles H, Brigham KL. Respiratory failure after endotoxin infusion in sheep: lung mechanics and lung fluid balance. J. Appl. Physiol.53(4), 967–976 (1982).
  • Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol.28(5), 596–608 (1970).
  • Bachofen H, Schurch S, Michel RP, Weibel ER. Experimental hydrostatic pulmonary edema in rabbit lungs. Morphology. Am. Rev. Resp. Dis.147(4), 989–996 (1993).
  • Bilek AM, Dee KC, Gaver DP 3rd. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol.94(2), 770–783 (2003).
  • Gaver DP 3rd, Kute SM. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys. J.75(2), 721–733 (1998).
  • Huh D, Fujioka H, Tung YC et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA104(48), 18886–18891 (2007).
  • Fung Y. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York, USA (1981).
  • Rodarte JR, Hubmayr RD, Stamenovic D, Walters BJ. Regional lung strain in dogs during deflation from total lung capacity. J. Appl. Physiol.58(1), 164–172 (1985).
  • Chiumello D, Carlesso E, Cadringher P et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.178(4), 346–355 (2008).
  • Waters CM, Sporn PH, Liu M, Fredberg JJ. Cellular biomechanics in the lung. Am. J. Physiol.283(3), L503–L509 (2002).
  • Agostoni E. Mechanics of the pleural space. In: Handbook of Physiology. Geiger S (Ed.). American Physiological Society, MD, USA, 531–559 (1986).
  • D’Angelo E, Michelini S, Agostoni E. Partition of factors contributing to the vertical gradient of transpulmonary pressure. Respir. Physiol.12(1), 90–101 (1971).
  • Rodarte J, Fung Y. Distribution of stresses within the lung. In: Handbook of Physiology. Section 3: Respiratory System. Fishman A (Ed.). Williams and Wilkins Co., MD, USA, 233–246 (1986).
  • Wilson TA. Solid mechanics. In: Handbook of Physiology. Section 3: Respiratory System. Fishman A (Ed.). Williams and Wilkins Co., MD, USA, 35–40 (1986).
  • Albert RK, Hubmayr RD. The prone position eliminates compression of the lungs by the heart. Am. J. Respir. Crit. Care Med.161(5), 1660–1665 (2000).
  • Bar-Yishay E, Hyatt RE, Rodarte JR. Effect of heart weight on distribution of lung surface pressures in vertical dogs. J. Appl. Physiol.61(2), 712–718 (1986).
  • Agostoni E, D’Angelo E, Bonanni MV. The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir. Physiol.8(3), 332–346 (1970).
  • Chang H, Lai-Fook SJ, Domino KB et al. Spatial distribution of ventilation and perfusion in anesthetized dogs in lateral postures. J. Appl. Physiol.92(2), 745–762 (2002).
  • Hubmayr RD, Rodarte JR, Walters BJ, Tonelli FM. Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J. Appl. Physiol.63(6), 2467–2475 (1987).
  • Weibel ER, Gil J. Structure–function relationships at the alveolar level. In: Bioengineering Aspects of the Lung. West JB (Ed.). Dekker, NY, USA, 1–81 (1977).
  • Wilson TA, Bachofen H. A model for mechanical structure of the alveolar duct. J. Appl. Physiol.52(4), 1064–1070 (1982).
  • Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol.98(5), 1892–1899 (2005).
  • Ingber D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol.3(5), 841–848 (1991).
  • Misof K, Rapp G, Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys. J.72(3), 1376–1381 (1997).
  • Bachofen H, Schurch S. Alveolar surface forces and lung architecture. Comp. Biochem. Physiol.129(1), 183–193 (2001).
  • Tschumperlin DJ, Margulies SS. Alveolar epithelial surface area–volume relationship in isolated rat lungs. J. Appl. Physiol.86(6), 2026–2033 (1999).
  • Puybasset L, Cluzel P, Gusman P et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med.26(7), 857–869 (2000).
  • Puybasset L, Gusman P, Muller JC et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med.26(9), 1215–1227 (2000).
  • Caironi P, Cressoni M, Chiumello D et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.181, 578–586, (2010).
  • Gattinoni L, Caironi P, Cressoni M et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med.354(17), 1775–1786 (2006).
  • Nieszkowska A, Lu Q, Vieira S et al. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit. Care Med.32(7), 1496–1503 (2004).
  • Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am. J. Respir. Crit. Care Med.156(5), 1640–1646 (1997).
  • Bouhemad B, Liu ZH, Arbelot C et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit. Care Med.38(1), 84–92 (2010).
  • Deans KJ, Minneci PC, Cui X et al. Mechanical ventilation in ARDS: one size does not fit all. Crit. Care Med.33(5), 1141–1143 (2005).
  • Brochard L. Respiratory pressure–volume curves. In: Principles and Practice of Intensive Care Monitoring. Tobin M (Ed.). McGraw-Hill, NY, USA, 597–616 (1997).
  • Crotti S, Mascheroni D, Caironi P et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am. J. Respir. Crit. Care Med.164(1), 131–140 (2001).
  • Pelosi P, Goldner M, McKibben A et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am. J. Respir. Crit. Care Med.164(1), 122–130 (2001).
  • Slutsky AS. Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest104(6), 1833–1859 (1993).
  • Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit. Care8(5), 350–355 (2004).
  • Hess DR, Bigatello LM. The chest wall in acute lung injury/acute respiratory distress syndrome. Curr. Opin. Crit. Care14(1), 94–102 (2008).
  • Talmor D, Sarge T, O’Donnell CR et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit. Care Med.34(5), 1389–1394 (2006).
  • Loring SH, O’Donnell CR, Behazin N et al. Esophageal pressures in acute lung injury-do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J. Appl. Physiol.108(3), 515–522 (2010).
  • Talmor D, Sarge T, Malhotra A et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N. Engl. J. Med.359(20), 2095–2104 (2008).
  • Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am. J. Respir. Crit. Care Med.172(10), 1241–1245 (2005).
  • Brower RG, Hubmayr RD, Slutsky AS. Lung stress and strain in acute respiratory distress syndrome: good ideas for clinical management? Am. J. Respir. Crit. Care Med.178(4), 323–324 (2008).
  • Maisch S, Boehm SH, Weismann D et al. Determination of functional residual capacity by oxygen washin-washout: a validation study. Intensive Care Med.33(5), 912–916 (2007).
  • Olegard C, Sondergaard S, Palsson J, Lundin S, Stenqvist O. Validation and clinical feasibility of nitrogen washin/washout functional residual capacity measurements in children. Acta Anaesthesiol. Scand.54(3), 370–376 (2010).
  • Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Resp. Dis.110(5), 556–565 (1974).
  • Gibson GJ, Pride NB. Lung distensibility. The static pressure–volume curve of the lungs and its use in clinical assessment. Br. J. Dis. Chest70(3), 143–184 (1976).
  • Hager DN, Brower RG. Customizing lung-protective mechanical ventilation strategies. Crit. Care Med.34(5), 1554–1555 (2006).
  • Milic-Emili J, Mead J, Turner JM. Topography of esophageal pressure as a function of posture in man. J. Appl. Physiol.19, 212–216 (1964).
  • Milic-Emili J, Mead J, Turner JM, Glauser EM. Improved technique for estimating pleural pressure from esophageal balloons. J. Appl. Physiol.19, 207–211 (1964).
  • Washko GR, O’Donnell CR, Loring SH. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J. Appl. Physiol.100(3), 753–758 (2006).
  • Hubmayr RD. Is there a place for esophageal manometry in the care of patients with injured lungs? J. Appl. Physiol.108, 481–482 (2010).
  • Sarge T, Talmor D. Targeting transpulmonary pressure to prevent ventilator induced lung injury. Minerva Anestesiol.75(5), 293–299 (2009).
  • McGee KP, Hubmayr RD, Levin D, Ehman RL. Feasibility of quantifying the mechanical properties of lung parenchyma in a small-animal model using 1H magnetic resonance elastography (MRE). J. Magn. Reson. Imaging29(4), 838–845 (2009).
  • McGee KP, Hubmayr RD, Ehman RL. MR elastography of the lung with hyperpolarized 3He. Magn. Reson. Med.59(1), 14–18 (2008).
  • Goss BC, McGee KP, Ehman EC, Manduca A, Ehman RL. Magnetic resonance elastography of the lung: technical feasibility. Magn. Reson. Med.56(5), 1060–1066 (2006).
  • Zhang X, Qiang B, Hubmayr R et al. Preliminary study of human lung elasticity with the noninvasive surface wave technique. Presented at: UFFC Meeting 2010. CA, USA, 2–4 June 2010.
  • Bachofen H, Gerber U, Schurch S. Effects of fixatives on function of pulmonary surfactant. J. Appl. Physiol.93(3), 911–916 (2002).
  • Oldmixon EH, Hoppin FG Jr. Alveolar septal folding and lung inflation history. J. Appl. Physiol.71(6), 2369–2379 (1991).
  • Wirtz HR, Dobbs LG. The effects of mechanical forces on lung functions. Respir. Physiol.119(1), 1–17 (2000).
  • Perlman CE, Bhattacharya J. Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol.103(3), 1037–1044 (2007).
  • Carney DE, Bredenberg CE, Schiller HJ et al. The mechanism of lung volume change during mechanical ventilation. Am. J. Respir. Crit. Care Med.160(5 Pt 1), 1697–1702 (1999).
  • Schiller HJ, Steinberg J, Halter J et al. Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit. Care Med.31(4), 1126–1133 (2003).
  • Halter JM, Steinberg JM, Schiller HJ et al. Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am. J. Respir. Crit. Care Med.167(12), 1620–1626 (2003).
  • Steinberg J, Schiller HJ, Halter JM et al. Tidal volume increases do not affect alveolar mechanics in normal lung but cause alveolar overdistension and exacerbate alveolar instability after surfactant deactivation. Crit. Care Med.30(12), 2675–2683 (2002).
  • Schiller HJ, McCann UG 2nd, Carney DE et al. Altered alveolar mechanics in the acutely injured lung. Crit. Care Med.29(5), 1049–1055 (2001).
  • Pavone LA, Albert S, Carney D et al. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics. Crit. Care11(3), R64 (2007).
  • Azeloglu EU, Bhattacharya J, Costa KD. Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness. J. Appl. Physiol.105(2), 652–661 (2008).
  • Berrios JC, Schroeder MA, Hubmayr RD. Mechanical properties of alveolar epithelial cells in culture. J. Appl. Physiol.91(1), 65–73 (2001).
  • Banes AJ, Tsuzaki M, Yamamoto J et al. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell. Biol.73(7–8), 349–365 (1995).
  • Dreyfuss D, Saumon G. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am. Rev. Resp. Dis.148(5), 1194–1203 (1993).
  • Egan EA. Lung inflation, lung solute permeability, and alveolar edema. J. Appl. Physiol.53(1), 121–125 (1982).
  • Gajic O, Lee J, Doerr CH et al. Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med.167(8), 1057–1063 (2003).
  • Yoshigi M, Clark EB, Yost HJ. Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry A55(2), 109–118 (2003).
  • Wang N, Ingber DE. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J.66(6), 2181–2189 (1994).
  • Heidemann SR, Wirtz D. Towards a regional approach to cell mechanics. Trends Cell Biol.14(4), 160–166 (2004).
  • Ko KS, McCulloch CA. Partners in protection: interdependence of cytoskeleton and plasma membrane in adaptations to applied forces. J. Membr. Biol.174(2), 85–95 (2000).
  • Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am. J. Respir. Crit. Care Med.166(9), 1282–1289 (2002).
  • Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol.280(5), L938–L946 (2001).
  • Oeckler RA, Hubmayr RD. Cell wounding and repair in ventilator injured lungs. Respir. Physiol. Neurobiol.163(1–3), 44–53 (2008).
  • Chakrabarti S, Kobayashi KS, Flavell RA et al. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J. Cell Biol.162(4), 543–549 (2003).
  • Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest.99(5), 944–952 (1997).
  • Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit. Care Med.31(4 Suppl.), S200–S206 (2003).
  • Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J. Appl. Physiol.89(4), 1645–1655 (2000).
  • West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J. Appl. Physiol.70(4), 1731–1742 (1991).
  • Tsukimoto K, Mathieu-Costello O, Prediletto R, Elliott AR, West JB. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J. Appl. Physiol.71(2), 573–582 (1991).
  • Berg JT, Fu Z, Breen EC et al. High lung inflation increases mRNA levels of ECM components and growth factors in lung parenchyma. J. Appl. Physiol.83(1), 120–128 (1997).
  • Pugin J, Dunn I, Jolliet P et al. Activation of human macrophages by mechanical ventilation in vitro. Am. J. Physiol.275(6 Pt 1), L1040–L1050 (1998).
  • Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol.277(1 Pt 1), L167–L173 (1999).
  • Li LF, Ouyang B, Choukroun G et al. Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-κB-inducing kinases. Am. J. Physiol.285(2), L464–L475 (2003).
  • D’Angelo E, Pecchiari M, Della Valle P, Koutsoukou A, Milic-Emili J. Effects of mechanical ventilation at low lung volume on respiratory mechanics and nitric oxide exhalation in normal rabbits. J. Appl. Physiol.99(2), 433–444 (2005).
  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am. J. Physiol.295(3), L379–L399 (2008).
  • Hubmayr RD. Ventilator-induced lung injury without biotrauma? J. Appl. Physiol.99(2), 384–385 (2005).
  • Brower RG, Shanholtz CB, Fessler HE et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit. Care Med.27(8), 1492–1498 (1999).
  • Stewart TE, Meade MO, Cook DJ et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N. Engl. J. Med.338(6), 355–361 (1998).
  • Amato MB, Barbas CS, Medeiros DM et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med.338(6), 347–354 (1998).
  • Gajic O, Dara SI, Mendez JL et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit. Care Med.32(9), 1817–1824 (2004).
  • Wolthuis EK, Choi G, Dessing MC et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology108(1), 46–54 (2008).
  • Determann RM, Wolthuis EK, Choi G et al. Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am. J. Physiol.294(2), L344–L350 (2008).
  • Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology106(6), 1226–1231 (2007).
  • Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol.72(6), 567–576 (2006).
  • Laffey JG, Engelberts D, Kavanagh BP. Buffering hypercapnic acidosis worsens acute lung injury. Am. J. Respir. Crit. Care Med.161(1), 141–146 (2000).
  • Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill – too little of a good thing? Lancet354(9186), 1283–1286 (1999).
  • Mascheroni D, Kolobow T, Fumagalli R et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med.15(1), 8–14 (1988).
  • Meade MO, Cook DJ, Guyatt GH et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA299(6), 637–645 (2008).
  • Terragni PP, Rosboch G, Tealdi A et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.175(2), 160–166 (2007).
  • Grasso S, Fanelli V, Cafarelli A et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.171(9), 1002–1008 (2005).
  • Mercat A, Richard JC, Vielle B et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA299(6), 646–655 (2008).
  • Grasso S, Stripoli T, De Michele M et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am. J. Respir. Crit. Care Med.176(8), 761–767 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.