240
Views
74
CrossRef citations to date
0
Altmetric
Review

Neurotrophins in lung health and disease

, , , , , & show all
Pages 395-411 | Published online: 09 Jan 2014

References

  • Levi-Montalcini R. The saga of the nerve growth factor. Neuroreport9, R71–R83 (1998).
  • Hennigan A, O’Callaghan RM, Kelly AM. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem. Soc. Trans.35(Pt 2), 424–427 (2007).
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci.361, 1545–1564 (2006).
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat. Rev. Neurosci.6, 603–614 (2005).
  • Blum R, Konnerth A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology20, 70–78 (2005).
  • Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell. Mol. Life Sci.61, 35–48 (2004).
  • Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin. Sci. (Lond.)110, 167–173 (2006).
  • Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc. Res.4, 143–151 (2007).
  • Kalb R. The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci.28, 5–11 (2005).
  • Saragovi HU, Hamel E, Di Polo A. A neurotrophic rationale for the therapy of neurodegenerative disorders. Curr. Alzheimer Res.6, 419–423 (2009).
  • Schulte-Herbruggen O, Jockers-Scherubl MC, Hellweg R. Neurotrophins: from pathophysiology to treatment in Alzheimer’s disease. Curr. Alzheimer Res.5, 38–44 (2008).
  • Thiele CJ, Li Z, McKee AE. On Trk – the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res.15, 5962–5967 (2009).
  • Blesch A, Tuszynski MH. Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Prog. Brain Res.137, 415–423 (2002).
  • Dwivedi Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr. Dis. Treat.5, 433–449 (2009).
  • Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets7, 46–62 (2008).
  • Lessmann V, Brigadski T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci. Res.65, 11–22 (2009).
  • Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol.69, 341–374 (2003).
  • McDonald NQ, Chao MV. Structural determinants of neurotrophin action. J. Biol. Chem.270, 19669–19672 (1995).
  • Robinson RC, Radziejewski C, Stuart DI, Jones EY. Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry34, 4139–4146 (1995).
  • Butte MJ, Hwang PK, Mobley WC, Fletterick RJ. Crystal structure of neurotrophin-3 homodimer shows distinct regions are used to bind its receptors. Biochemistry37, 16846–16852 (1998).
  • Barker PA. p75NTR is positively promiscuous: novel partners and new insights. Neuron42, 529–533 (2004).
  • Blochl A, Blochl R. A cell-biological model of p75NTR signaling. J. Neurochem.102, 289–305 (2007).
  • Chen Y, Zeng J, Cen L et al. Multiple roles of the p75 neurotrophin receptor in the nervous system. J. Int. Med. Res.37, 281–288 (2009).
  • Conover JC, Yancopoulos GD. Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev. Neurosci.8, 13–27 (1997).
  • Yamashita T, Fujitani M, Hata K, Mimura F, Yamagishi S. Diverse functions of the p75 neurotrophin receptor. Anat. Sci. Int.80, 37–41 (2005).
  • Underwood CK, Coulson EJ. The p75 neurotrophin receptor. Int. J. Biochem. Cell Biol.40, 1664–1668 (2008).
  • Kovalchuk Y, Holthoff K, Konnerth A. Neurotrophin action on a rapid timescale. Curr. Opin. Neurobiol.14, 558–563 (2004).
  • Carvalho AL, Caldeira MV, Santos SD, Duarte CB. Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br. J. Pharmacol.153(Suppl. 1), S310–S324 (2008).
  • Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels. Bioessays26, 1185–1194 (2004).
  • Nockher WA, Renz H. Neurotrophins in clinical diagnostics: pathophysiology and laboratory investigation. Clin. Chim. Acta352, 49–74 (2005).
  • Sariola H. The neurotrophic factors in non-neuronal tissues. Cell. Mol. Life Sci.58, 1061–1066 (2001).
  • Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton. Neurosci.151, 46–60 (2009).
  • Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res.336, 349–384 (2009).
  • Mantilla CB, Zhan WZ, Sieck GC. Neurotrophins improve neuromuscular transmission in the adult rat diaphragm. Muscle Nerve29, 381–386 (2004).
  • Raap U, Kapp A. Neuroimmunological findings in allergic skin diseases. Curr. Opin. Allergy Clin. Immunol.5, 419–424 (2005).
  • Schiller LR. New and emerging treatment options for chronic constipation. Rev. Gastroenterol. Disord.4(Suppl. 2), S43–S51 (2004).
  • Caporali A, Emanueli C. Cardiovascular actions of neurotrophins. Physiol. Rev.89, 279–308 (2009).
  • Ricci A, Graziano P, Bronzetti E et al. Increased pulmonary neurotrophin protein expression in idiopathic interstitial pneumonias. Sarcoidosis Vasc. Diffuse Lung Dis.24, 13–23 (2007).
  • Ricci A, Felici L, Mariotta S et al. Neurotrophin and neurotrophin receptor protein expression in the human lung. Am. J. Respir. Cell Mol. Biol.30, 12–19 (2004).
  • Virchow JC, Julius P, Lommatzsch M et al. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am. J. Respir. Crit. Care Med.158, 2002–2005 (1998).
  • Rochlitzer S, Nassenstein C, Braun A. The contribution of neurotrophins to the pathogenesis of allergic asthma. Biochem. Soc. Trans.34(Pt 4), 594–599 (2006).
  • Raap U, Braunstahl GJ. The role of neurotrophins in the pathophysiology of allergic rhinitis. Curr. Opin. Allergy Clin. Immunol.10, 8–13 (2010).
  • Nockher WA, Renz H. Neurotrophins and asthma: novel insight into neuroimmune interaction. J. Allergy Clin. Immunol.117, 67–71 (2006).
  • Nockher WA, Renz H. Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J. Allergy Clin. Immunol.117, 583–589 (2006).
  • Kobayashi H, Gleich GJ, Butterfield JH, Kita H. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood99, 2214–2220 (2002).
  • Noga O, Englmann C, Hanf G et al. The production, storage and release of the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 by human peripheral eosinophils in allergics and non-allergics. Clin. Exp. Allergy33, 649–654 (2003).
  • Toyoda M, Nakamura M, Makino T, Morohashi M. Localization and content of nerve growth factor in peripheral blood eosinophils of atopic dermatitis patients. Clin. Exp. Allergy33, 950–955 (2003).
  • Noga O, Englmann C, Hanf G et al. Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin. Exp. Allergy32, 1348–1354 (2002).
  • Hamada A, Watanabe N, Ohtomo H, Matsuda H. Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br. J. Haematol.93, 299–302 (1996).
  • Raap U, Fokkens W, Bruder M et al. Modulation of neurotrophin and neurotrophin receptor expression in nasal mucosa after nasal allergen provocation in allergic rhinitis. Allergy63, 468–475 (2008).
  • Piedimonte G. Contribution of neuroimmune mechanisms to airway inflammation and remodeling during and after respiratory syncytial virus infection. Pediatr. Infect. Dis. J.22(2 Suppl.), S66–S74 (2003).
  • Noga O, Peiser M, Altenahr M et al. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor. Clin. Exp. Allergy37, 1701–1708 (2007).
  • Noga O, Peiser M, Altenahr M et al. Selective induction of nerve growth factor and brain-derived neurotrophic factor by LPS and allergen in dendritic cells. Clin. Exp. Allergy38, 473–479 (2008).
  • Hikawa S, Kobayashi H, Hikawa N et al. Expression of neurotrophins and their receptors in peripheral lung cells of mice. Histochem. Cell Biol.118, 51–58 (2002).
  • Santambrogio L, Benedetti M, Chao MV et al. Nerve growth factor production by lymphocytes. J. Immunol.153, 4488–4495 (1994).
  • Lambiase A, Bracci-Laudiero L, Bonini S et al. Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J. Allergy Clin. Immunol.100, 408–414 (1997).
  • Kerschensteiner M, Gallmeier E, Behrens L et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med.189, 865–870 (1999).
  • Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc. Am. Thorac. Soc.5, 772–777 (2008).
  • Othumpangat S, Gibson LF, Samsell L, Piedimonte G. NGF is an essential survival factor for bronchial epithelial cells during respiratory syncytial virus infection. PLoS One4, e6444 (2009).
  • Hahn C, Islamian AP, Renz H, Nockher WA. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J. Allergy Clin. Immunol.117, 787–794 (2006).
  • Lommatzsch M, Braun A, Renz H. Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us. Ann. NY Acad. Sci.992, 241–249 (2003).
  • Fox AJ, Patel HJ, Barnes PJ, Belvisi MG. Release of nerve growth factor by human pulmonary epithelial cells: role in airway inflammatory diseases. Eur. J. Pharmacol.424, 159–162 (2001).
  • Sonar SS, Schwinge D, Kilic A et al. Nerve growth factor enhances Clara cell proliferation after lung injury. Eur. Respir. J. DOI: 10.1183/09031936.00165508 (2010) (Epub ahead of print).
  • Meuchel L, Townsend E, Thompson M, Pabelick C, Prakash Y. Effect of neurotrophins on NO generation in airway epithelial cells. Presented at: International Conference of the American Thoracic Society. New Orleans, LA, USA, 14–19 May 2010 (Abstract).
  • Prakash YS, Iyanoye A, Ay B, Mantilla CB, Pabelick CM. Neurotrophin effects on intracellular Ca2+ and force in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol.291, L447–L456 (2006).
  • Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-α modulation of Ca2+ in human airway smooth muscle. Am. J. Respir. Cell Mol. Biol.41, 603–611 (2009).
  • Kraemer R, Nguyen H, March KL, Hempstead B. NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler. Thromb. Vasc. Biol.19, 1041–1050 (1999).
  • Wang S, Bray P, McCaffrey T et al. p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle cells. Am. J. Pathol.157, 1247–1258 (2000).
  • Kemi C, Grunewald J, Eklund A, Hoglund CO. Differential regulation of neurotrophin expression in human bronchial smooth muscle cells. Respir. Res.7, 18 (2006).
  • Hamid Q, Tulic M. Immunobiology of asthma. Annu. Rev. Physiol.71, 489–507 (2009).
  • Brightling C, Berry M, Amrani Y. Targeting TNF-α: a novel therapeutic approach for asthma. J. Allergy Clin. Immunol.121, 5–10; quiz 11–12 (2008).
  • Racke K, Matthiesen S. The airway cholinergic system: physiology and pharmacology. Pulm. Pharmacol. Ther.17, 181–198 (2004).
  • Canning BJ. Reflex regulation of airway smooth muscle tone. J. Appl. Physiol.101, 971–985 (2006).
  • Verhein KC, Fryer AD, Jacoby DB. Neural control of airway inflammation. Curr. Allergy Asthma Rep.9, 484–490 (2009).
  • Groneberg DA, Harrison S, Dinh QT, Geppetti P, Fischer A. Tachykinins in the respiratory tract. Curr. Drug Targets7, 1005–1010 (2006).
  • Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation. Eur. J. Pharmacol.500, 453–465 (2004).
  • Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol. Ther.117, 52–76 (2008).
  • Hoyle GW, Graham RM, Finkelstein JB et al. Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am. J. Respir. Cell Mol. Biol.18, 149–157 (1998).
  • Braun A, Lommatzsch M, Neuhaus-Steinmetz U et al. Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br. J. Pharmacol.141, 431–440 (2004).
  • Xu M, Remillard CV, Sachs BD et al. p75 neurotrophin receptor regulates agonist-induced pulmonary vasoconstriction. Am. J. Physiol. Heart Circ. Physiol.295, H1529–H1538 (2008).
  • Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D. Nerve growth factor as an angiogenic factor. Microvasc. Res.75, 135–141 (2008).
  • Campos X, Munoz Y, Selman A et al. Nerve growth factor and its high-affinity receptor TrkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol. Oncol.104, 168–175 (2007).
  • Ejiri J, Inoue N, Kobayashi S et al. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation112, 2114–2120 (2005).
  • Ricci A, Greco S, Amenta F et al. Neurotrophins and neurotrophin receptors in human pulmonary arteries. J. Vasc. Res.37, 355–363 (2000).
  • Meuchel L, Thompson M, Pabelick C, Prakash Y. Neurotrophins induce NO generation in pulmonary artery endothelial cells. Presented at: Experimental Biology 2010. Anaheim, CA, USA, 24–28 April 2010 (Abstract).
  • Ricci A, Bronzetti E, Mannino F et al. Elevated neurotrophin and neurotrophin receptor expression in spontaneously hypertensive rat lungs. Growth Factors22, 195–205 (2004).
  • Lommatzsch M, Quarcoo D, Schulte-Herbruggen O et al. Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int. J. Dev. Neurosci.23, 495–500 (2005).
  • Garcia-Suarez O, Perez-Pinera P, Laura R et al. TrkB is necessary for the normal development of the lung. Respir. Physiol. Neurobiol.167, 281–291 (2009).
  • Lommatzsch M, Braun A, Mannsfeldt A et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived neurotrophic functions. Am. J. Pathol.155, 1183–1193 (1999).
  • Chen X, Ye H, Kuruvilla R et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron46, 13–21 (2005).
  • Hack M, Taylor HG, Drotar D et al. Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. JAMA294, 318–325 (2005).
  • Yao Q, Zaidi SI, Haxhiu MA, Martin RJ. Neonatal lung and airway injury: a role for neurotrophins. Semin. Perinatol.30, 156–162 (2006).
  • Yao Q, Haxhiu MA, Zaidi SI et al. Hyperoxia enhances brain-derived neurotrophic factor and tyrosine kinase B receptor expression in peribronchial smooth muscle of neonatal rats. Am. J. Physiol. Lung Cell Mol. Physiol.289, L307–L314 (2005).
  • Tortorolo L, Langer A, Polidori G et al. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am. J. Respir. Crit. Care Med.172, 233–237 (2005).
  • Zaidi SI, Jafri A, Doggett T, Haxhiu MA. Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: implications for neuronal plasticity. Brain Res.1044, 133–143 (2005).
  • Sopi RB, Martin RJ, Haxhiu MA et al. Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma. Am. J. Physiol. Lung Cell Mol. Physiol.295, L348–L355 (2008).
  • Nassenstein C, Braun A, Nockher WA, Renz H. Neurotrophin effects on eosinophils in allergic inflammation. Curr. Allergy Asthma Rep.5, 204–211 (2005).
  • Nassenstein C, Mohring UH, Luttmann W, Virchow JC Jr, Braun A. Differential expression of the neurotrophin receptors p75NTR, TrkA, TrkB and TrkC in human peripheral blood mononuclear cells. Exp. Toxicol. Pathol.57(Suppl. 2), 55–63 (2006).
  • Abram M, Wegmann M, Fokuhl V et al. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation. J. Immunol.182, 4705–4712 (2009).
  • Bennedich Kahn L, Gustafsson LE, Olgart Hoglund C. Brain-derived neurotrophic factor enhances histamine-induced airway responses and changes levels of exhaled nitric oxide in guinea pigs in vivo. Eur. J. Pharmacol.595, 78–83 (2008).
  • Dagnell C, Kemi C, Klominek J et al. Effects of neurotrophins on human bronchial smooth muscle cell migration and matrix metalloproteinase-9 secretion. Transl. Res.150, 303–310 (2007).
  • Nassenstein C, Dawbarn D, Pollock K et al. Pulmonary distribution, regulation, and functional role of Trk receptors in a murine model of asthma. J. Allergy Clin. Immunol.118, 597–605 (2006).
  • Renz H, Kerzel S, Nockher WA. The role of neurotrophins in bronchial asthma: contribution of the pan-neurotrophin receptor p75. Prog. Brain Res.146, 325–333 (2004).
  • Braun A, Lommatzsch M, Lewin GR, Virchow JC, Renz H. Neurotrophins: a link between airway inflammation and airway smooth muscle contractility in asthma? Int. Arch. Allergy Immunol.118, 163–165 (1999).
  • Micera A, Vigneti E, Pickholtz D et al. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc. Natl Acad. Sci. USA98, 6162–6167 (2001).
  • Bahat-Stroomza M, Barhum Y, Levy YS et al. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J. Mol. Neurosci.39, 199–210 (2009).
  • Dekkers BG, Maarsingh H, Meurs H, Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc. Am. Thorac. Soc.6, 683–692 (2009).
  • Bai TR. Evidence for airway remodeling in chronic asthma. Curr. Opin. Allergy Clin. Immunol.10, 82–86 (2010).
  • Lagente V, Boichot E. Role of matrix metalloproteinases in the inflammatory process of respiratory diseases. J. Mol. Cell. Cardiol.48(3), 440–444 (2009).
  • Fujimaki H, Win-Shwe TT, Yamamoto S, Nakajima D, Goto S. The expression of nerve growth factor in mice lung following low-level toluene exposure. Toxicol. Lett.191, 240–245 (2009).
  • Win-Shwe TT, Yamamoto S, Nakajima D et al. Modulation of neurological related allergic reaction in mice exposed to low-level toluene. Toxicol. Appl. Pharmacol.222, 17–24 (2007).
  • Fujimaki H, Yamamoto S, Win-Shwe TT et al. Effect of long-term exposure to low-level toluene on airway inflammatory response in mice. Toxicol. Lett.168, 132–139 (2007).
  • Kimata H. Passive smoking elevates neurotrophin levels in tears. Hum. Exp. Toxicol.23, 215–217 (2004).
  • Urrego F, Scuri M, Auais A, Mohtasham L, Piedimonte G. Combined effects of chronic nicotine and acute virus exposure on neurotrophin expression in rat lung. Pediatr. Pulmonol.44, 1075–1084 (2009).
  • McSharry CP, Fraser I, Chaudhuri R et al. Nerve growth factor in serum and lymphocyte culture in pigeon fanciers’ acute hypersensitivity pneumonitis. Chest130, 37–42 (2006).
  • Olgart C, Frossard N. Human lung fibroblasts secrete nerve growth factor: effect of inflammatory cytokines and glucocorticoids. Eur. Respir. J.18, 115–121 (2001).
  • Antonelli A, Lapucci G, Vigneti E, Bonini S, Aloe L. Human lung fibroblast response to NGF, IL-1β, and dexamethsone. Lung183, 337–351 (2005).
  • Kruttgen A, Schneider I, Weis J. The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol.16, 304–310 (2006).
  • Ricci A, Greco S, Mariotta S et al. Neurotrophins and neurotrophin receptors in human lung cancer. Am. J. Respir. Cell Mol. Biol.25, 439–446 (2001).
  • Ricci A, Graziano P, Mariotta S et al. Neurotrophin system expression in human pulmonary carcinoid tumors. Growth Factors23, 303–312 (2005).
  • Perez-Pinera P, Hernandez T, Garcia-Suarez O et al. The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol. Cell Biochem.295, 19–26 (2007).
  • Missale C, Codignola A, Sigala S et al. Nerve growth factor abrogates the tumorigenicity of human small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA95, 5366–5371 (1998).
  • Bandtlow C, Dechant G. From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Sci. STKE (235), pe24 (2004).
  • Lomen-Hoerth C, Shooter EM. Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J. Neurochem.64, 1780–1789 (1995).
  • Goss JR. The therapeutic potential of gene transfer for the treatment of peripheral neuropathies. Expert Rev. Mol. Med.9, 1–20 (2007).
  • Webster NJ, Pirrung MC. Small molecule activators of the Trk receptors for neuroprotection. BMC Neurosci.9(Suppl. 2), S1 (2008).
  • Longo FM, Massa SM. Small molecule modulation of p75 neurotrophin receptor functions. CNS Neurol. Disord. Drug Targets7, 63–70 (2008).
  • Nockher WA, Renz H. Neurotrophins in inflammatory lung diseases: modulators of cell differentiation and neuroimmune interactions. Cytokine Growth Factor Rev.14, 559–578 (2003).
  • Hoyle GW. Neurotrophins and lung disease. Cytokine Growth Factor Rev.14, 551–558 (2003).
  • Nassenstein C, Kerzel S, Braun A. Neurotrophins and neurotrophin receptors in allergic asthma. Prog. Brain Res.146, 347–367 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.