324
Views
31
CrossRef citations to date
0
Altmetric
Review

Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome

, &
Pages 479-489 | Published online: 09 Jan 2014

References

  • Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann. Intern. Med.151, 566–576 (2009).
  • Fan E, Wilcox ME, Brower RG et al. Recruitment maneuvers for acute lung injury: a systematic review. Am. J. Respir. Crit. Care Med.178, 1156–1163 (2008).
  • Crotti S, Mascheroni D, Caironi P et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am. J. Respir. Crit. Care Med.164, 131–140 (2001).
  • Hodgson C, Keating JL, Holland AE et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst. Rev.15, CD006667 (2009).
  • Borges JB, Okamoto VN, Matos GF et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.174, 268–278 (2006).
  • Riva DR, Contador RS, Baez-Garcia CS et al. Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury. Respir. Physiol. Neurobiol.169(1), 62–68 (2009).
  • Pelosi P, Bottino N, Chiumello D et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.167, 521–527 (2003).
  • Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky AS. Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med.25(11), 1297–1301 (1999).
  • Rimensberger PC, Cox PN, Frndova H, Bryan AC. The open lung during small tidal volume ventilation: concepts of recruitment and ‘optimal’ positive end-expiratory pressure. Crit. Care Med.27(9), 1946–1952 (1999).
  • Kloot TE, Blanch L, Youngblood MA et al. Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am. J. Respir. Crit. Care Med.161, 1485–1494 (2000).
  • Grasso S, Stripoli T, Sacchi M et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am. J. Respir. Crit. Care Med.180, 415–423 (2009).
  • Farias LL, Faffe DS, Xisto DG et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J. Appl. Physiol.98, 53–61 (2005).
  • Riva DR, Oliveira MB, Rzezinski AF et al. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit. Care Med.36(6), 1900–1908 (2008).
  • Maggiore SM, Lellouche F, Pigeot J et al. Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am. J. Respir. Crit. Care Med.167, 1215–1224 (2003).
  • Villagra A, Ochagavia A, Vatua S et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.165(2), 165–170 (2002).
  • Brower RG, Morris A, MacIntyre N et al. Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit. Care Med.31, 2592–2597 (2003).
  • Oczenski W, Hîrmann C, Keller C et al. Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology101, 620–625 (2004).
  • Odenstedt H, Aneman A, Kárason S, Stenqvist O, Lundin S. Acute hemodynamic changes during lung recruitment in lavage and endotoxin-induced ALI. Intensive Care Med.31, 112–120 (2005).
  • Lim SC, Adams AB, Simonson DA et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit. Care Med.32, 2378–2384 (2004).
  • Grasso S, Mascia L, Del Turco M et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology96(4), 795–802 (2002).
  • Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med.28(4), 406–413 (2002).
  • Lim CM, Jung H, Koh Y et al. Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit. Care Med.31(2), 411–418 (2003).
  • Meade MO, Cook DJ, Griffith LE et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir. Care53, 1441–1449 (2008).
  • Bein T, Kuhr LP, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med.28(5), 554–558 (2002).
  • Constantin JM, Cayot-Constantin S, Roszyk L et al. Response to recruitment maneuver influences net alveolar fluid clearance in acute respiratory distress syndrome. Anesthesiology106, 944–951 (2007).
  • Musch G, Harris RS, Vidal Melo MF et al. Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology100, 323–330 (2004).
  • Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med.32, 24–33 (2006).
  • Cakar N, Akinci O, Tugrul S et al. Recruitment maneuver: does it promote bacterial translocation? Crit. Care Med.30, 2103–2106 (2002).
  • Halbertsma FJ, Vaneker M, Pickkers P, Neeleman C, Scheffer GJ, Hoeven van der JG. A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation. J. Crit. Care25(1), 10–15 (2010).
  • Pelosi P, Cadringher P, Bottino N et al. Sigh in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.159, 872–880 (1999).
  • Foti G, Cereda M, Sparacino ME, De Marchi L, Villa F, Pesenti A. Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med.26(5), 501–507 (2000).
  • Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato MB, Kacmarek RM. Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Crit. Care Med.29, 1579–1586 (2001).
  • Steimback PW, Oliveira GP, Rzezinksi AF et al. Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Med.35, 1120–1128 (2009)
  • Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MB, Hess D. Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit. Care Med.28(4), 1210–1216 (2000).
  • Lim CM, Koh Y, Park W et al. Mechanistic scheme and effect of ‘extended sigh’ as a recruitment maneuver in patients with acute respiratory distress syndrome: a preliminary study. Crit. Care Med.29, 1255–1260 (2001).
  • Odenstedt H, Lindgren S, Olegard C et al. Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med.31, 1706–1714 (2005).
  • Rzezinski AF, Oliveira GP, Santiago VR et al. Prolonged recruitment manoeuvre improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respir. Physiol. Neurobiol.169, 271–281 (2009).
  • Funk DJ, Graham MR, Girling LG et al. A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir. Res.5, 22 (2004).
  • Spieth PM, Carvalho AR, Pelosi P et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am. J. Respir. Crit. Care Med.179, 684–693 (2009).
  • Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE. Avalanches and power-law behaviour in lung inflation. Nature368, 615–618 (1994).
  • Mutch WAC, Harms S, Ruth Graham M, Kowalski SE, Girling LG, Lefevre GR. Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am. J. Respir. Crit. Care Med.162, 319–323 (2000).
  • McMullen MC, Girling LG, Graham MR, Mutch WAC. Biologically variable ventilation improves oxygenation and respiratory mechanics during one-lung ventilation. Anesthesiology105, 91–97 (2006).
  • Bellardine CL, Hoffman AM, Tsai L et al. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit. Care Med.34, 439–445 (2006).
  • Thammanomai A, Hueser E, Majumdar A, Bartolák-Suki E, Suki B. Design of a new variable-ventilation method optimized for lung recruitment in mice. J. Appl. Physiol.104, 1329–1340 (2008).
  • Suki B, Alencar AM, Sujeer MK et al. Life-support system benefits from noise. Nature393, 127–128 (1998).
  • Arold SP, Bartolák-Suki E, Suki B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am. J. Physiol. Lung Cell. Mol. Physiol.296, L574–L581 (2009).
  • Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am. J. Physiol. Lung Cell Mol. Physiol.285, L370–L375 (2003).
  • Gama de Abreu M, Spieth P, Pelosi P et al. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit. Care Med.36, 818–827 (2008).
  • Spieth P, Carvalho AR, Güldner A et al. Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology110, 214–215 (2009).
  • Rocco PRM, Pelosi P. Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality? Curr. Opin. Crit. Care Med.14, 50–55 (2008).
  • Ornellas D, Santiago VR, Rzezinski AF et al. Lung mechanical stress induced by recruitment maneuver in different degrees of acute lung injury. Am. J. Respir. Crit. Care Med.179, A3837 (2009).
  • Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am. J. Respir. Crit. Care Med.158, 3–11 (1998).
  • Malbrain ML, Chiumello D, Pelosi P et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit. Care Med.33(2), 315–322 (2005).
  • Malbrain ML, Chiumello D, Pelosi P et al. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med.30(5), 822–829 (2004).
  • Agostoni E, D’Angelo E, Bonanni MV. The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir. Physiol.8(3), 332–346 (1970).
  • D’Angelo E, Giglio R, Lafontaine E, Bellemare F. Influence of abdomen on respiratory mechanics in supine rabbits. Respir. Physiol.115(3), 287–299 (1999).
  • Krebs J, Pelosi P, Tsagogiorgas C, Alb M, Luecke T. Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. Crit. Care13(5), R160 (2009).
  • Bates JH, Irvin CG. Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol.93(2), 705–713 (2002).
  • Allen GB, Suratt BT, Rinaldi L, Petty JM, Bates JH. Choosing the frequency of deep inflation in mice: balancing recruitment against ventilator-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.291(4), L710–L717 (2006).
  • Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology74, 15–23 (1991).
  • Taccone P, Pesenti A, Latini R et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA302(18), 1977–1984 (2009).
  • Santana MC, Garcia CS, Xisto DG et al. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respir. Physiol. Neurobiol.167(2), 181–188 (2009).
  • Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit. Care Med.28, 295–303 (2000).
  • Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ. Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit. Care Med.25, 16–27 (1997).
  • Nakos G, Batistatou A, Galiatsou E et al. Lung and ‘end organ’ injury due to mechanical ventilation in animals: comparison between the prone and supine positions. Crit. Care10, R38 (2006).
  • Nishimura M, Honda O, Tomyiama N, Johkoh T, Kagawa K, Nishida T. Body position does not influence the location of ventilator-induced lung injury. Intensive Care Med.26, 1664–1669 (2000).
  • Valenza F, Guglielmi M, Maffioletti M et al. Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit. Care Med.33, 361–367 (2005).
  • Albert RK, Leasa D, Sanderson M, Robertson HT, Hlastala MP. The prone position improves arterial oxygenation and reduces shunt in oleic-acid-induced acute lung injury. Am. Rev. Respir. Dis.135, 628–633 (1987).
  • Mutoh T, Guest RJ, Lamm WJE, Albert RK. Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs invivo. Am. Rev. Respir. Dis.146, 300–306 (1992).
  • Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur. Respir. J.22, 15–25 (2003).
  • Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am. J. Respir. Crit. Care Med.150, 184–193 (1995).
  • Richter T, Bellami G, Scott Harris R et al. Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am. J. Respir. Crit. Care Med.172, 480–487 (2005).
  • Oczenski W, Hormann C, Keller C et al. Recruitment maneuvers during prone positioning in patients with acute respiratory distress syndrome. Crit. Care Med.33(1), 54–61; quiz 62 (2005).
  • Schuster DP. Fluid management in ARDS: ‘keep them dry’ or does it matter? Intensive Care Med.21(2), 101–103 (1995).
  • Wiedemann HP, Wheeler AP, Bernard GR et al. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med.354(24), 2564–2575 (2006).
  • Silva PL, Moraes L, Santos R et al. Effects of different recruitment maneuvers on lung morpho-function and alevolar stress. Presented at: American Thoracic Society International Conference. New Orleans, LA, USA, 14–19 May 2010 (A1688).
  • Gattinoni L, Bombino M, Pelosi P et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA271, 1772–1779 (1994).
  • Brochard L. Watching what PEEP really does. Am. J. Respir. Crit. Care Med.163(6), 1291–1292 (2001).
  • Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med.164, 1701–1711 (2001).
  • Gattinoni L, Caironi P, Cressoni M et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med.354, 1775–1786 (2006).
  • Wrigge H, Zinserling J, Muders T et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit. Care Med.36, 903–909 (2008).
  • Costa EL, Borges JB, Melo A et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med.35(6), 1132–1137 (2009).
  • Arbelot C, Ferrari F, Bouhemad B, Rouby JJ. Lung ultrasound in acute respiratory distress syndrome and acute lung injury. Curr. Opin. Crit. Care14, 70–74 (2008).
  • Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure–volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am. Rev. Respir. Dis.136, 730–736 (1987).
  • Rouby JJ, Lu Q, Vieira S. Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur. Respir. J. Suppl.42, 27–36 (2003).
  • Demory D, Arnal JM, Wysocki M et al. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med.34(11), 2019–2025 (2008).
  • Koefoed-Nielsen J, Nielsen ND, Kjaergaard AJ, Larsson A. Alveolar recruitment can be predicted from airway pressure–lung volume loops: an experimental study in a porcine acute lung injury model. Crit. Care12(1), R7 (2008).
  • Amato MBP, Barbas CSV, Medeiros DM et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med.338, 347–354 (1998).
  • Vieira SR, Puybasset L, Lu Q et al. A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure–volume curve. Am. J. Respir. Crit. Care Med.159(5 Pt 1), 1612–1623 (1999).
  • Gattinoni L, Pesenti A, Bombino M et al. Relationships between lung computed tomography density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology69, 824–832 (1988).
  • Cressoni M, Caironi P, Polli F et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit. Care Med.36, 669–675 (2008).
  • Caironi P, Gattinoni L. How to monitor lung recruitment in patients with acute lung injury. Curr. Opin. Crit. Care13(3), 338–343 (2007).
  • Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. Regional distribution of gas and tissue in acute respiratory distress syndrome. II: physiological correlations and definition of an ARDS severity score. Int. Care Med.26, 1046–1056 (2000).
  • Puybasset L, Cluzel P, Gusman P et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med.26, 857–869 (2000).
  • Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med.26, 1215–1227 (2000).
  • Briel M, Meade M, Mercat A et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA303(9), 865–873 (2010).
  • Constantin JM, Grasso S, Chanques G et al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit. Care Med.38(4), 1108–1117 (2010).
  • Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit. Care Med.34(5), 1311–1318 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.