308
Views
60
CrossRef citations to date
0
Altmetric
Review

Preterm birth and respiratory disease in later life

&
Pages 593-604 | Published online: 09 Jan 2014

References

  • Tucker J, McGuire W. Epidemiology of preterm birth. Br. Med. J.329(7467), 675–678 (2004).
  • Martin J, Kochanek K, Strobino D, Guyer B, MacDorman M. Annual summary of vital statistics – 2003. Pediatrics115(3), 619–634 (2005).
  • de Kleine MJK, den Ouden AL, Kollee LAA et al. Lower mortality but higher neonatal morbidity over a decade in very preterm infants. Paediatr. Perinat. Epidemiol.21(1), 15–25 (2007).
  • Tommiska V, Heinonen K, Lehtonen L et al. No improvement in outcome of nationwide extremely low birth weight infant populations between 1996–1997 and 1999–2000. Pediatrics119(1), 29–36 (2007).
  • Jobe A. Lung maturation: the survival miracle of very low birth weight infants. Pediatr. Neonatol.51(1), 7–13 (2010).
  • Lahra M, Jeffery H. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am. J. Obstet. Gynecol.190(1), 147–151 (2004).
  • Andrews W, Goldenberg R, Faye-Petersen O, Cliver S, Goepfert A, Hauth J. The Alabama Preterm Birth Study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am. J. Obstet. Gynecol.195(3), 803–808 (2006).
  • Soraisham A, Singhal N, McMillan D, Sauve R, Lee S. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am. J. Obstet. Gynecol.200(4), 372.e1–e6 (2009).
  • Been J, Rours I, Kornelisse R et al. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: effects on neonatal outcome in preterm infants. Am. J. Obstet. Gynecol.201(6), 587–589 (2009).
  • Jobe A, Newnham J, Willet K et al. Endotoxin-induced lung maturation in preterm lambs is not mediated by cortisol. Am. J. Respir. Crit. Care Med.162(5), 1656–1661 (2000).
  • Moss T, Nitsos I, Ikegami M, Jobe A, Newnham J. Experimental intrauterine ureaplasma infection in sheep. Am. J. Obstet. Gynecol.192(4), 1179–1186 (2005).
  • Willet K, Kramer B, Kallapur S et al. Intra-amniotic injection of IL-1 induces inflammation and maturation in fetal sheep lung. Am. J. Physiol. Lung Cell Mol. Physiol.282(3), L411–L420 (2002).
  • Chang E, Menard M, Vermillion S, Hulsey T, Ebeling M. The association between hyaline membrane disease and preeclampsia. Am. J. Obstet. Gynecol.191(4), 1414–1417 (2004).
  • Jobe A, Mitchell B, Gunkel J. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am. J. Obstet. Gynecol.168(2), 508–513 (1993).
  • Sweet D, Bevilacqua G, Carnielli V et al. European consensus guidelines on the management of neonatal respiratory distress syndrome. J. Perinat. Med.35(3), 175–186 (2007).
  • Roberts D, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev.3, CD004454(2006).
  • Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst. Rev.2, CD007836 (2009).
  • Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics123(6), 1562–1573 (2009).
  • Warburton D, Bellusci S, De Langhe S et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr. Res.57(5), 26R–37R (2005).
  • Thebaud B. Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity. Neonatology91(4), 291–297 (2007).
  • Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr. Res.57(5), 38R–46R (2005).
  • Jobe A, Bancalari E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med.163(7), 1723–1729 (2001).
  • Fanaroff A, Stoll B, Wright L et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am. J. Obstet. Gynecol.196(2), 147, e141–e148 (2007).
  • Akram KM, Kuzma-O’Reilly B, Brodsky NL, Bhandari V. Site-specific characteristics of infants developing bronchopulmonary dysplasia. J. Perinatol.26(7), 428–435 (2006).
  • Zeitlin J, Draper ES, Kollee L et al. Differences in rates and short-term outcome of live births before 32 weeks of gestation in Europe in 2003: results from the MOSAIC cohort. Pediatrics121(4), e936–e944 (2008).
  • Markestad T, Kaaresen P, Rønnestad A et al. Early death, morbidity, and need of treatment among extremely premature infants. Pediatrics115(5), 1289–1298 (2005).
  • Jobe AJ. The new BPD: an arrest of lung development. Pediatr. Res.46(6), 641–643 (1999).
  • Baraldi E, Carraro S, Filippone M. Bronchopulmonary dysplasia: definitions and long-term respiratory outcome. Early Hum. Dev.85(10 Suppl.), S1–S3 (2009).
  • Chess P, D’Angio C, Pryhuber G, Maniscalco W. Pathogenesis of bronchopulmonary dysplasia. Semin. Perinatol.30(4), 171–178 (2006).
  • Bokodi G, Treszl A, Kovacs L, Tulassay T, Vasarhelyi B. Dysplasia: a review. Pediatr. Pulmonol.42(10), 952–961 (2007).
  • Bhering C, Mochdece C, Moreira M, Rocco J, Sant’Anna G. Bronchopulmonary dysplasia prediction model for 7-day-old infants. J. Pediatr. (Rio J.)83(2), 163–170 (2007).
  • Henderson-Smart D, Hutchinson J, Donoghue D, Evans N, Simpson J, Wright I. Prenatal predictors of chronic lung disease in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed.91(1), F40–F45 (2006).
  • Payne N, LaCorte M, Karna P et al. Reduction of bronchopulmonary dysplasia after participation in the Breathsavers Group of the Vermont Oxford Network Neonatal Intensive Care Quality Improvement Collaborative. Pediatrics118(Suppl. 2), S73–S77 (2006).
  • Stevens T, Harrington E, Blennow M, Soll R. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst. Rev.4, CD003063(2007).
  • Kamlin C, Davis P. Long versus short inspiratory times in neonates receiving mechanical ventilation. Cochrane Database Syst. Rev.4, CD004503 (2004).
  • Cools F, Henderson-Smart D, Offringa M, Askie L. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst. Rev.3, CD000104 (2009).
  • Askie L, Henderson-Smart D, Ko H. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst. Rev.1, CD001077 (2009).
  • Stevens T, Dylag A, Panthagani I, Pryhuber G, Halterman J. Effect of cumulative oxygen exposure on respiratory symptoms during infancy among VLBW infants without bronchopulmonary dysplasia. Pediatr. Pulmonol.45(4), 371–379 (2010).
  • Deulofeut R, Critz A, Adams-Chapman I, Sola A. Avoiding hyperoxia in infants < or = 1250 g is associated with improved short- and long-term outcomes. J. Perinatol.26(11), 700–705 (2006).
  • Cole C, Wright K, Tarnow-Mordi W, Phelps D. Resolving our uncertainty about oxygen therapy. Pediatrics112(6 Pt 1), 1415–1419 (2003).
  • Kotecha S, Allen J. Oxygen therapy for infants with chronic lung disease. Arch. Dis. Child.87(1), F11–F14 (2002).
  • Halliday HL, Ehrenkranz RA, Doyle LW. Late (>7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst. Rev.1, CD001145 (2009).
  • Halliday HL, Ehrenkranz RA, Doyle LW. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev.1, CD001146 (2010).
  • Kramer B, Kallapur S, Newnham J, Jobe A. Prenatal inflammation and lung development. Semin. Fetal Neonatal Med.14(1), 2–7 (2009).
  • Davies P, Maxwell N, Kotecha S. The role of inflammation and infection in the development of chronic lung disease of prematurity. Adv. Exp. Med. Biol.582, 101–110 (2006).
  • Schelonka R, Waites K. Ureaplasma infection and neonatal lung disease. Semin. Perinatol.31(1), 2–9 (2007).
  • Colaizy T, Morris C, Lapidus J, Sklar R, Pillers D. Detection of ureaplasma DNA in endotracheal samples is associated with bronchopulmonary dysplasia after adjustment for multiple risk factors. Pediatr. Res.61(5 Pt 1), 578–583 (2007).
  • Bry K, Lappalainen U. Pathogenesis of bronchopulmonary dysplasia: the role of interleukin 1b in the regulation of inflammation-mediated pulmonary retinoic acid pathways in transgenic mice. Semin. Perinatol.30(3), 121–128 (2006).
  • Nedrelow JH, Bhandari V. (IL)-6 to vascular endothelial growth factor (VEGF) ratio predicts the development of brochopulmonary dysplasia (BPD)/death in premature infants. Pediatr. Res.55(4), 496A–496A (2004).
  • Kramer B. Antenatal inflammation and lung injury: prenatal origin of neonatal disease. J. Perinatol.28(Suppl. 1), S21–S27 (2008).
  • Speer C. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin. Fetal Neonatal Med.11(5), 354–362 (2006).
  • Vento G, Capoluongo E, Matassa PG et al. Serum levels of seven cytokines in premature ventilated newborns: correlations with old and new forms of bronchopulmonary dysplasia. Intensive Care Med.32(5), 723–730 (2006).
  • Abman SH. Bronchopulmonary dysplasia: ‘a vascular hypothesis’. Am. J. Respir. Crit. Care Med.164(10 Pt 1), 1755–1756 (2001).
  • Asikainen TM, Ahmad A, Schneider BK, White CW. Effect of preterm birth on hypoxia-inducible factors and vascular endothelial growth factor in primate lungs. Pediatr. Pulmonol.40(6), 538–546 (2005).
  • Janer J, Lassus P, Haglund C, Paavonen K, Alitalo K, Andersson S. Pulmonary vascular endothelial growth factor-C in development and lung injury in preterm infants. Am. J. Respir. Crit. Care Med.174(3), 326–330 (2006).
  • Lassus P, Turanlahti M, Heikkila P et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med.164(10), 1981–1987 (2001).
  • Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am. J. Respir. Crit. Care Med.175(10), 978–985 (2007).
  • Bhandari V, Bizzarro MJ, Shetty A et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics117(6), 1901–1906 (2006).
  • Hallman M, Marttila R, Pertile R, Ojaniemi M, Haataja R. Genes and environment in common neonatal lung disease. Neonatology91(4), 298–302 (2007).
  • Kwinta P, Bik-Multanowski M, Mitkowska Z, Tomasik T, Legutko M, Pietrzyk JJ. Genetic risk factors of bronchopulmonary dysplasia. Pediatr. Res.64(6), 682–688 (2008).
  • Parton LA, Strassberg SS, Qian DJ, Galvin-Parton PA, Cristea IA. The genetic basis for bronchopulmonary dysplasia. Front. Biosci.11, 1854–1860 (2006).
  • Weber B, Borkhardt A, Stoll-Becker S, Reiss I, Gortner L. Polymorphisms of surfactant protein A genes and the risk of bronchopulmonary dysplasia in preterm infants. Turk. J. Pediatr.42(3), 181–185 (2000).
  • Yanamandra K, Boggs P, Loggins J, Baier RJ. Interleukin-10–1082 G/A polymorphism and risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants. Pediatr. Pulmonol.39(5), 426–432 (2005).
  • Ehrenkranz RA, Walsh MC, Vohr BR et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics116(6), 1353–1360 (2005).
  • Jones R, Bodnar A, Roan Y, Johnson D. Subglottic stenosis in newborn intensive care unit graduates. Am. J. Dis. Child.135(4), 367–368 (1981).
  • Miller RW, Woo P, Kellman RK, Slagle TS. Tracheobronchial abnormalities in infants with bronchopulmonary dysplasia. J. Pediatr.111(5), 779–782 (1987).
  • Cohn RC, Kercsmar C, Dearborn D. Safety and efficacy of flexible endoscopy in children with bronchopulmonary dysplasia. Am. J. Dis. Child.142(11), 1225–1228 (1988).
  • Sherman JM, Lowitt S, Stephenson C, Ironson G. Factors influencing acquired subgottic stenosis in infants. J. Pediatr.109(2), 322–327 (1986).
  • Filtchev SI, Curzi-Dascalova L, Spassov L, Kauffmann Fo, Trang HTT, Gaultier C. Heart rate variability during sleep in infants with bronchopulmonary dysplasia. Chest106(6), 1711–1716 (1994).
  • Garg M, Kurzner SI, Bautista DB, Keens TG. Clinically unsuspected hypoxia during sleep and feeding in infants with bronchopulmonary dysplasia. Pediatrics81(5), 635–642 (1988).
  • Harris MA, Sullivan C. Sleep pattern and supplementary oxygen requirements in infants with chronic neonatal lung disease. Lancet345(8953), 831–832 (1995).
  • Lamarche-Vadel A, Blondel B, Truffert P et al. Re-hospitalization in infants younger than 29 weeks’ gestation in the EPIPAGE cohort. Acta Paediatrica93(10), 1340–1345 (2004).
  • Smith VC, Zupancic JAF, McCormick MC et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J. Pediatr.144(6), 799–803 (2004).
  • Greenough A, Alexander J, Burgess S et al. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease. Arch. Dis. Child.86(1), 40–43 (2002).
  • Krilov L, Weiner L, Yogev R et al. The 2009 COID recommendations for RSV prophylaxis: issues of efficacy, cost, and evidence-based medicine. Pediatrics124(6), 1682–1684 (2009).
  • Allen J, Zwerdling R, Ehrenkranz R et al. Statement on the care of the child with chronic lung disease of infancy and childhood. Am. J. Respir. Crit. Care Med.168(3), 356–396 (2003).
  • Greenough A, Limb E, Marston L, Marlow N, Calvert S, Peacock J. Risk factors for respiratory morbidity in infancy after very premature birth. Arch. Dis. Child. Fetal Neonatal Ed.90(4), F320–F323 (2005).
  • Vrijlandt EJLE, Boezen HM, Gerritsen J, Stremmelaar FF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J. Pediatr.150(3), 256–261 (2007).
  • Greenough A, Alexander J, Burgess S et al. Preschool healthcare utilisation related to home oxygen status. Arch. Dis. Child. Fetal Neonatal Ed.91(5), F337–F341 (2006).
  • Broughton S, Thomas MR, Marston L et al. Very prematurely born infants wheezing at follow-up: lung function and risk factors. Arch. Dis. Child.92(9), 776–780 (2007).
  • Beydon N, Davis S, Lombardi E et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am. J. Respir. Crit. Care Med.175(12), 1304–1345 (2007).
  • Hennessy EM, Bracewell MA, Wood N et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch. Dis. Child.93(12), 1037–1043 (2008).
  • Kwinta P, Tomasik T, Klimek M, Lis G, Cichocka-Jarosz E, Pietrzyk J. Wheezing in very low birth weight infants: sequence of early neonatal lung injury or increased susceptibility for allergic reactions? Follow-up study up to age of 5–7 years. Przegl Lek.64(Suppl. 3), 118–121 (2007).
  • Kwinta P, Tomasik T, Klimek M, Cichocka-Jarosz E, Lis G, Pietrzyk J. Health status at the age of 5–7 years of preterm infants with and without bronchopulmonary dysplasia. Przegl Lek.66(1–2), 21–26 (2009).
  • Palta M, Sadek-Badawi M, Sheehy M et al. Respiratory symptoms at age 8 years in a cohort of very low birth weight children. Am. J. Epidemiol.154(6), 521–529 (2001).
  • Palta M, Sadek-Badawi M, Madden K, Green C. Pulmonary testing using peak flow meters of very low birth weight children born in the perisurfactant era and school controls at age 10 years. Pediatr. Pulmonol.42(9), 819–828 (2007).
  • Brooks A, Byrd R, Weitzman M, Auinger P, McBride J. Impact of low birth weight on early childhood asthma in the United States. Arch. Pediatr. Adolesc. Med.155(3), 401–406 (2001).
  • Mai X, Gäddlin P, Nilsson L et al. Asthma, lung function and allergy in 12-year-old children with very low birth weight: a prospective study. Pediatr. Allergy Immunol.14(3), 184–192 (2003).
  • Raby B, Celedón J, Litonjua A et al. Low-normal gestational age as a predictor of asthma at 6 years of age. Pediatrics114(3), e327–e332 (2004).
  • Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Oymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr. Allergy Immunol.16(6), 487–494 (2005).
  • Broström E, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. Obstructive lung disease in children with mild to severe BPD. Respir. Med.104(3), 362–370 (2010).
  • Filippone M, Bonetto G, Cherubin E, Carraro S, Baraldi E. Childhood course of lung function in survivors of bronchopulmonary dysplasia. JAMA302(13), 1418–1420 (2009).
  • Stern DA, Morgan WJ, Wright AL, Guerra S, Martinez FD. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet370(9589), 758–764 (2007).
  • Doyle L. Respiratory function at age 8–9 years in extremely low birthweight/very preterm children born in Victoria in 1991–1992. Pediatr. Pulmonol.41(6), 570–576 (2006).
  • Chan K, Elliman A, Bryan E, Silverman M. Respiratory symptoms in children of low birth weight. Arch. Dis. Child.64(9), 1294–1304 (1989).
  • Chan K, Wong Y, Silverman M. Relationship between infant lung mechanics and childhood lung function in children of very low birthweight. Pediatr. Pulmonol.8(2), 74–81 (1990).
  • de Kleine M, Roos C, Voorn W, Jansen H, Koppe J. Lung function 8–18 years after intermittent positive pressure ventilation for hyaline membrane disease. Thorax45(12), 941–946 (1990).
  • Halvorsen T, Skadberg B, Eide G, Røksund O, Carlsen K, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr.93(10), 1294–1300 (2004).
  • Bentham J, Shaw N. Some chronic obstructive pulmonary disease will originate in neonatal intensive care units. Paediatr. Respir. Rev.6(1), 29–32 (2005).
  • Santuz P, Baraldi E, Zaramella P, Filippone M, Zacchello F. Factors limiting exercise performance in long-term survivors of bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med.152(4), 1284–1289 (1995).
  • Northway W, Moss R, Carlisle K et al. Late pulmonary sequelae of bronchopulmonary dysplasia. N. Engl. J. Med.323(26), 1793–1799 (1990).
  • Aukland S, Rosendahl K, Owens C, Fosse K, Eide G, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax64(5), 405–410 (2009).
  • Wong PM, Lees AN, Louw J et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur. Respir. J.32(2), 321–328 (2008).
  • Cutz E, Chiasson D. Chronic lung disease after premature birth. N. Engl. J. Med.358(7), 743–745; author reply 745–746 (2008).
  • Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N. Engl. J. Med.276(7), 357–368 (1967).
  • Hofhuis W, Huysman M, van der Wiel E et al. Worsening of V’maxFRC in infants with chronic lung disease in the first year of life: a more favorable outcome after high-frequency oscillation ventilation. Am. J. Respir. Crit. Care Med.166(12 Pt 1), 1539–1543 (2002).
  • Hoo A, Stocks J, Lum S et al. Development of lung function in early life: influence of birth weight in infants of nonsmokers. Am. J. Respir. Crit. Care Med.170(5), 527–533 (2004).
  • Baraldi E, Filippone M. Chronic lung disease after premature birth. N. Engl. J. Med.357(19), 1946–1955 (2007).
  • Hakulinen AL, Heinonen K, Lansimies E, Kiekara O. Pulmonary-function and respiratory morbidity in school-age-children born prematurely and ventilated for neonatal respiratory insufficiency. Pediatr. Pulmonol.8(4), 226–232 (1990).
  • Giacoia GP, Venkataraman PS, West-Wilson KI, Faulkner MJ. Follow-up of school-age children with bronchopulmonary dysplasia. J. Pediatr.130(3), 400–408 (1997).
  • Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am. J. Respir. Crit. Care Med.156(4), 1178–1184 (1997).
  • Gross SJ, Iannuzzi D, Kveselis DA, Anbar RD. Effect of preterm birth on pulmonary function at school age: a prospective controlled study. J. Pediatr.133(2), 188–192 (1998).
  • Mitchell SH, Teague WG. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med.157(5), 1406–1412 (1998).
  • Kennedy JD, Edward LJ, Bates DJ et al. Effects of birthweight and oxygen supplementation on lung function in late childhood in children of very low birth weight. Pediatr. Pulmonol.30(1), 32–40 (2000).
  • Pianosi PT, Fisk M. Cardiopulmonary exercise performance in prematurely born children. Pediatr. Res.47(5), 653–658 (2000).
  • Doyle LW, Cheung MMH, Ford GW, Olinsky A, Davis NM, Callanan C. Birth weight <1501 g and respiratory health at age 14. Arch. Dis. Child.84(1), 40–44 (2001).
  • Kilbride HW, Gelat MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J. Pediatr.143(4), 488–493 (2003).
  • Korhonen P, Laitinen J, Hyodynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatrica93(3), 316–321 (2004).
  • Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am. J. Respir. Crit. Care Med.171(1), 68–72 (2005).
  • Vrijlandt EJLE, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am. J. Respir. Crit. Care Med.173(8), 890–896 (2006).
  • Doyle LW, Victorian Infant Collaborative Study Group. Respiratory function at age 8–9 years in extremely low birthweight/very preterm children born in Victoria in 1991–1992. Pediatr. Pulmonol.41(6), 570–576 (2006).
  • Narang I, Rosenthal M, Cremonesini D, Silverman M, Bush A. Longitudinal evaluation of airway function 21 years after preterm birth. Am. J. Respir. Crit. Care Med.178(1), 74–80 (2008).
  • Welsh L, Kirkby J, Lum S et al. The EPICure study: maximal exercise and physical activity in school children born extremely preterm. Thorax65(2), 165–172 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.