192
Views
60
CrossRef citations to date
0
Altmetric
Perspective

Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease

, &
Pages 573-584 | Published online: 09 Jan 2014

References

  • Rabe KF, Hurd S, Anzueto A et al.; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med.176, 532–555 (2007).
  • Macnee W. Pathogenesis of chronic obstructive pulmonary disease. Clin. Chest Med.28, 479–513 (2007).
  • Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc. Am. Thorac. Soc.3, 503–510 (2006).
  • Yao H, Rahman I. Current concepts on the role of inflammation in COPD and lung cancer. Curr. Opin. Pharmacol.9, 375–383 (2009).
  • Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol.533, 222–239 (2006).
  • van der Toorn M, Smit-de Vries MP, Slebos DJ et al. Cigarette smoke irreversibly modifies glutathione in airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.293, L1156–L1162 (2007).
  • van der Toorn M, Rezayat D, Kauffman HF et al. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.297, L109–L114 (2009).
  • Park JW, Ryter SW, Choi AM. Functional significance of apoptosis in chronic obstructive pulmonary disease. COPD4, 347–353 (2007).
  • Henson PM, Vandivier RW, Douglas IS. Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc. Am. Thorac. Soc.3, 713–717 (2006).
  • Petrache I, Natarajan V, Zhen L et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med.11, 491–498 (2005).
  • Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol. Rev.87, 1047–1082 (2007).
  • Hodge S, Hodge G, Holmes M, Reynolds PN. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur. Respir. J.25, 447–454 (2005).
  • Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M. Upregulation of gelatinases A and B, collagenases 1 and 2, increased parenchymal cell death in COPD. Chest117, 684–694 (2000).
  • Yokohori N, Aoshiba K, Nagai A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest125, 626–632 (2004).
  • Imai K, Mercer BA, Schulman LL, Sonett JR, D’Armiento JM. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur. Respir. J.25, 250–258 (2005).
  • Slebos DJ, Ryter SW, van der Toorn M et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol.36, 409–417 (2007).
  • Park JW, Kim HP, Lee S-J et al. Protein kinase Cα and ζ differentially regulate death-inducing signaling complex formation in cigarette smoke extract-induced apoptosis. J. Immunol.180, 4668–4678 (2008).
  • Aoshiba K, Tamaoki J, Nagai A. Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol.281, L1392–L1401 (2001).
  • Kim HP, Wang X, Chen Z-H et al. Autophagic proteins regulate cigarette smoke induced apoptosis: protective role of heme oxygenase-1. Autophagy4(7), 887–895 (2008).
  • Chen ZH, Kim HP, Sciurba FC et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE3, e3316 (2008).
  • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell140, 313–326 (2010).
  • Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta1793, 664–673 (2009).
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet.43, 67–93 (2009).
  • Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem.282, 25464–25474 (2007).
  • Hosokawa N, Hara T, Kaizuka T et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009).
  • Jung CH, Jun CB, Ro SH et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell20, 1992–2003 (2009).
  • Liang XH, Jackson S, Seaman M et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402, 672–676 (1999).
  • Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell19, 5360–5372 (2008).
  • Itakura E, Mizushima N. Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1–PI3K complexes. Autophagy5, 534–536 (2009).
  • Zhong Y, Wang QJ, Li X et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol.11, 468–476 (2009).
  • Maiuri MC, Le Toumelin G, Criollo A et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J.26, 2527–2539 (2007).
  • Pattingre S, Tassa A, Qu X et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell122, 927–939 (2005).
  • Klionsky DJ, Abeliovich H, Agostinis P et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy4, 151–175 (2008).
  • Kiffin R, Bandyopadhyay U, Cuervo AM. Oxidative stress and autophagy. Antioxid. Redox Signal.8, 152–162 (2006).
  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26, 1749–1760 (2007).
  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ.15, 171–182 (2008).
  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gison SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci.120, 4155–4166 (2007).
  • Khachigian LM. Early growth response-1 in cardiovascular pathobiology. Circ. Res.98, 186–191 (2006).
  • Ito K, Ito M, Elliott WM et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med.352, 1967–1976 (2005).
  • Chen ZH, Kim H, Lam H, Choi AM. Caveolin-1 protects against cigarette smoking induced autophagic cell death and emphysema in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.179, A1001 (2009).
  • Schlegel A, Lisanti MP. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev.12, 41–51 (2001).
  • Ryter SW, Chen ZH, Kim HP, Choi AM. Autophagy in chronic obstructive pulmonary disease: homeostatic or pathogenic mechanism? Autophagy5, 235–237 (2009).
  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008).
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell132, 27–42 (2008).
  • Levine B. Cell biology: autophagy and cancer. Nature446, 745–747 (2007).
  • Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer5, 726–734 (2005).
  • Lee JA. Autophagy in neurodegeneration: two sides of the same coin. BMB Rep.42, 324–330 (2009).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007).
  • Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GR. Autophagy in disease: a double-edged sword with therapeutic potential. Clin. Sci. (Lond.)116, 697–712 (2009).
  • Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res.104, 304–317 (2009).
  • De Meyer GR, Martinet W. Autophagy in the cardiovascular system. Biochim. Biophys. Acta1793, 1485–1495 (2009).
  • Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol.72, 19–44 (2010).
  • Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006).
  • Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006).
  • Tanaka, Y, Guhde G, Suter A et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature406, 902–906 (2000).
  • Nakai A, Yamaguchi O, Takeda T et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med.13, 619–624 (2007).
  • Matsui Y, Takagi H, Qu X et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res.100, 914–922 (2007).
  • Verheye S, Martinet W, Kockx MM et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J. Am. Coll. Cardiol.49, 706–715 (2007).
  • Lee SJ, Kim HP, Choi AMK. Autophagy represents an adaptive stress response to offset the development of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.179, A1813 (2009).
  • Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med.163, 737–744 (2001).
  • Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol.9, 1004–1010 (2008).
  • Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G. To die or not to die: that is the autophagic question. Curr. Mol. Med.8, 78–91 (2008).
  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol.8, 741–752 (2007).
  • Levine B, Yuan J. Autophagy in cell death: an innocent convict? J. Clin. Invest.115, 2679–2688 (2005).
  • Kroemer G, Galluzzi L, Vandenabeele P et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ.16, 3–11 (2009).
  • Boya P, Gonzalez-Polo RA, Casares N et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol.25, 1025–1040 (2005).
  • Yu L, Wan F, Dutta S et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA103, 4952–4957 (2006).
  • Xu Y, Kim SO, Li Y, Han J. Autophagy contributes to caspase-independent macrophage cell death. J. Biol. Chem.281, 19179–19187 (2006).
  • Madden DT, Egger L, Bredesen DE. A calpain-like protease inhibits autophagic cell death. Autophagy3, 519–522 (2007).
  • Yu L, Alva A, Su H et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science304, 1500–1502 (2004).
  • Wu YT, Tan HL, Huang Q et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy4, 457–466 (2008).
  • Shimizu S, Kanaseki T, Mizushima N et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol.6, 1221–1228 (2004).
  • Ding WX, Ni HM, Gao W et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem.282, 4702–4710 (2007).
  • Ullman E, Fan Y, Stawowczyk M et al. Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ.15, 422–425 (2008).
  • Wang Y, Singh R, Massey AC et al. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J. Biol. Chem.283, 4766–4777 (2008).
  • Liang XH, Kleeman LK, Jiang HH et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol.72, 8586–8596 (1998).
  • Pyo JO, Jang MH, Kwon YK et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem.280, 20722–20729 (2005).
  • Yousefi S, Perozzo R, Schmid I et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol.8, 1124–1132 (2006).
  • Crighton D, Wilkinson S, O’Prey J et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell126, 121–134 (2006).
  • Shimizu S, Konishi A, Nishida Y et al. Involvement of JNK in the regulation of autophagic cell death. Oncogene29, 2070–2082 (2010).
  • Virgin HW, Levine B. Autophagy genes in immunity. Nat. Immunol.10, 461–470 (2009).
  • Xu Y, Jagannath C, Liu XD et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity27, 135–144 (2007).
  • Delgado MA, Elmaoued RA, Davis AS et al. Toll-like receptors control autophagy. EMBO J.27, 1110–1121 (2008).
  • Sanjuan MA, Dillon CP, Tait SW et al. Toll-like receptor signaling in macrophages links the autophagy pathway to phagocytosis. Nature450, 1253–1257 (2007).
  • Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem.283, 33175–33182 (2008).
  • Huang J, Canadien V, Lam GY et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl Acad. Sci. USA106, 6226–6231 (2009).
  • Augustin S, Berard M, Kellaf S et al. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells. Anticancer Res.29, 1335–1343 (2009).
  • Tyagi N, Vacek JC, Givvimani S et al. Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. J. Recept. Signal Transduct. Res.30, 78–87 (2010).
  • Zhou B, Boudreau N, Coulber C et al. Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells. J. Clin. Invest.100, 3070–3082 (1997).
  • Zhou B, Rabinovitch M. Microtubule involvement in translational regulation of fibronectin expression by light chain 3 of microtubule-associated protein 1 in vascular smooth muscle cells. Circ. Res.83, 481–489 (1998).
  • Ying L, Lau A, Alvira CM et al. LC3-mediated fibronectin mRNA translation induces fibrosarcoma growth by increasing connective tissue growth factor. J. Cell Sci.122, 1441–1451 (2009).
  • Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem.269, 11492–11497 (1994).
  • Seidenbecher CI, Landwehr M, Smalla KH et al. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca2+-sensor proteins. J. Mol. Biol.336, 957–970 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.