3,506
Views
274
CrossRef citations to date
0
Altmetric
Review

The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine

, &
Pages 773-783 | Published online: 09 Jan 2014

References

  • Rubenfeld GD, Caldwell E, Peabody E et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med.353(16), 1685–1693 (2005).
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N. Engl. J. Med.342(18), 1334–1349 (2000).
  • Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med.21(3), 435–466 (2000).
  • Wang X, Adler KB, Erjefalt J, Bai C. Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome. Expert Rev. Respir. Med.1(1), 149–155 (2007).
  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.295(3), L379–L399 (2008).
  • Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur. Respir. J.30(3), 429–435 (2007).
  • Schmidhammer R, Wassermann E, Germann P, Redl H, Ullrich R. Infusion of increasing doses of endotoxin induces progressive acute lung injury but prevents early pulmonary hypertension in pigs. Shock25(4), 389–394 (2006).
  • Warner AE, DeCamp MM Jr, Molina RM, Brain JD. Pulmonary removal of circulating endotoxin results in acute lung injury in sheep. Lab. Invest.59(2), 219–230 (1988).
  • Li Y, Wei H. Lipopolysaccharide ‘two-hit’ induced refractory hypoxemia acute respiratory distress model in rats. J. Huazhong Univ. Sci. Technolog. Med. Sci.29(4), 470–475 (2009).
  • Szarka RJ, Wang N, Gordon L, Nation PN, Smith RH. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J. Immunol. Methods202(1), 49–57 (1997).
  • van Helden HP, Kuijpers WC, Steenvoorden D et al. Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome. Exp. Lung Res.23(4), 297–316 (1997).
  • Banfi A, Tiszlavicz L, Szekely E et al. Development of bronchus-associated lymphoid tissue hyperplasia following lipopolysaccharide-induced lung inflammation in rats. Exp. Lung Res.35(3), 186–197 (2009).
  • Wang SC, Klein RD, Wahl WL et al. Tissue coexpression of LBP and CD14 mRNA in a mouse model of sepsis. J. Surg. Res.76(1), 67–73 (1998).
  • Zhang XP, Zhang J, Ma ML et al. Pathological changes at early stage of multiple organ injury in a rat model of severe acute pancreatitis. Hepatobiliary Pancreat. Dis. Int.9(1), 83–87 (2010).
  • Simons RK, Junger WG, Loomis WH, Hoyt DB. Acute lung injury in endotoxemic rats is associated with sustained circulating IL-6 levels and intrapulmonary CINC activity and neutrophil recruitment – role of circulating TNF-α and IL-β? Shock6(1), 39–45 (1996).
  • Elder AC, Finkelstein J, Johnston C, Gelein R, Oberdorster G. Induction of adaptation to inhaled lipopolysaccharide in young and old rats and mice. Inhal. Toxicol.12(3), 225–243 (2000).
  • Chae BS, Park JS, Shin TY. Endotoxin induces late increase in the production of pulmonary proinflammatory cytokines in murine lupus-like pristane-primed model [corrected]. Arch. Pharm. Res.29(4), 302–309 (2006).
  • Simarro M, Giannattasio G, De la Fuente MA et al. Fas-activated serine/threonine phosphoprotein promotes immune-mediated pulmonary inflammation. J. Immunol.184(9), 5325–5332 (2010).
  • Gao XP, Liu Q, Broman M, Predescu D, Frey RS, Malik AB. Inactivation of CD11b in a mouse transgenic model protects against sepsis-induced lung PMN infiltration and vascular injury. Physiol. Genomics21(2), 230–242 (2005).
  • Alm AS, Li K, Yang D, Andersson R, Lu Y, Wang X. Varying susceptibility of pulmonary cytokine production to lipopolysaccharide in mice. Cytokine49(3), 256–263 (2010).
  • Alm AS, Li K, Chen H, Wang D, Andersson R, Wang X. Variation of lipopolysaccharide-induced acute lung injury in eight strains of mice. Respir. Physiol. Neurobiol.171(2), 157–164 (2010).
  • Phua J, Badia JR, Adhikari NK et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am. J. Respir. Crit. Care Med.179(3), 220–227 (2009).
  • Zellweger R, Wichmann MW, Ayala A, Stein S, DeMaso CM, Chaudry IH. Females in proestrus state maintain splenic immune functions and tolerate sepsis better than males. Crit. Care Med.25(1), 106–110 (1997).
  • Fowler RA, Filate W, Hartleib M, Frost DW, Lazongas C, Hladunewich M. Sex and critical illness. Curr. Opin Crit. Care15(5), 442–449 (2009).
  • Cheng DS, Han W, Chen SM et al. Airway epithelium controls lung inflammation and injury through the NF-κB pathway. J. Immunol.178(10), 6504–6513 (2007).
  • Kim HJ, Lee HS, Chong YH, Kang JL. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-κB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology225(1), 36–47 (2006).
  • Lipke AB, Matute-Bello G, Herrero R et al. Febrile-range hyperthermia augments lipopolysaccharide-induced lung injury by a mechanism of enhanced alveolar epithelial apoptosis. J. Immunol.184(7), 3801–3813 (2010).
  • Ingenito EP, Mora R, Cullivan M et al. Decreased surfactant protein-B expression and surfactant dysfunction in a murine model of acute lung injury. Am. J. Respir. Cell. Mol. Biol.25(1), 35–44 (2001).
  • Walker MG, Tessolini JM, McCaig L, Yao LJ, Lewis JF, Veldhuizen RA. Elevated endogenous surfactant reduces inflammation in an acute lung injury model. Exp. Lung Res.35(7), 591–604 (2009).
  • Mittal N, Sanyal SN. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury. J. Environ. Pathol. Toxicol. Oncol.28(4), 341–349 (2009).
  • Mora R, Arold S, Marzan Y, Suki B, Ingenito EP. Determinants of surfactant function in acute lung injury and early recovery. Am. J. Physiol. Lung. Cell. Mol. Physiol.279(2), L342–L349 (2000).
  • Reidy MF, Wright JR. Surfactant protein A enhances apoptotic cell uptake and TGF-β1 release by inflammatory alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol.285(4), L854–L861 (2003).
  • Delclaux C, Rezaiguia-Delclaux S, Delacourt C, Brun-Buisson C, Lafuma C, Harf A. Alveolar neutrophils in endotoxin-induced and bacteria-induced acute lung injury in rats. Am. J. Physiol.273(1 Pt 1), L104–L112 (1997).
  • Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Endotoxin-induced pulmonary vascular injury is mainly mediated by activated neutrophils in rats. Thromb. Res.78(2), 117–125 (1995).
  • Reutershan J, Morris MA, Burcin TL et al. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J. Clin. Invest.116(3), 695–702 (2006).
  • Miotla JM, Williams TJ, Hellewell PG, Jeffery PK. A role for the β2 integrin CD11b in mediating experimental lung injury in mice. Am. J. Respir. Cell. Mol. Biol.14(4), 363–373 (1996).
  • Zhao X, Dib M, Andersson E et al. Alterations of adhesion molecule expression and inflammatory mediators in acute lung injury induced by septic and non-septic challenges. Lung183(2), 87–100 (2005).
  • Reutershan J, Basit A, Galkina EV, Ley K. Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.289(5), L807–L815 (2005).
  • Petty JM, Sueblinvong V, Lenox CC et al. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury. J. Immunol.178(12), 8148–8157 (2007).
  • Karmpaliotis D, Kosmidou I, Ingenito EP et al. Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.283(3), L585–L595 (2002).
  • Brieland JK, Kunkel RG, Fantone JC. Pulmonary alveolar macrophage function during acute inflammatory lung injury. Am. Rev. Respir. Dis.135(6), 1300–1306 (1987).
  • Dong L, Wang S, Chen M, Li H, Bi W. The activation of macrophage and upregulation of CD40 costimulatory molecule in lipopolysaccharide-induced acute lung injury. J. Biomed. Biotechnol.2008, 852571 (2008).
  • Hashimoto N, Kawabe T, Imaizumi K et al. CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury. Am. J. Respir. Cell. Mol. Biol.30(6), 808–815 (2004).
  • Cakarova L, Marsh LM, Wilhelm J et al. Macrophage tumor necrosis factor-α induces epithelial expression of granulocyte–macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am. J. Respir. Crit. Care Med.180(6), 521–532 (2009).
  • Clark JG, Madtes DK, Hackman RC, Chen W, Cheever MA, Martin PJ. Lung injury induced by alloreactive Th1 cells is characterized by host-derived mononuclear cell inflammation and activation of alveolar macrophages. J. Immunol.161(4), 1913–1920 (1998).
  • D’Alessio FR, Tsushima K, Aggarwal NR et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Invest.119(10), 2898–2913 (2009).
  • Liu G, Wang J, Park YJ et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol.181(6), 4240–4246 (2008).
  • Cox G, Crossley J, Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol.12(2), 232–237 (1995).
  • Ueno H, Matsuda T, Hashimoto S et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am. J. Respir. Crit. Care Med.170(12), 1310–1316 (2004).
  • Feng Y, Yang Q, Xu J, Qian G, Liu Y. Effects of HMGB1 on PMN apoptosis during LPS-induced acute lung injury. Exp. Mol. Pathol.85(3), 214–222 (2008).
  • Hagiwara S, Iwasaka H, Hidaka S, Hishiyama S, Noguchi T. Danaparoid sodium inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats. Crit. Care12(2), R43 (2008).
  • Kuebler WM, Borges J, Sckell A et al. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am. J. Respir. Crit. Care Med.161(1), 36–43 (2000).
  • Miotla JM, Jeffery PK, Hellewell PG. Platelet-activating factor plays a pivotal role in the induction of experimental lung injury. Am. J. Respir. Cell. Mol. Biol.18(2), 197–204 (1998).
  • Zarbock A, Distasi MR, Smith E et al. Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI). J. Immunol.183(7), 4715–4722 (2009).
  • Nathens AB, Bitar R, Watson RW et al. Thiol-mediated regulation of ICAM-1 expression in endotoxin-induced acute lung injury. J. Immunol.160(6), 2959–2966 (1998).
  • Mazzola S, Forni M, Albertini M et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J.19(14), 2045–2047 (2005).
  • Bilban M, Bach FH, Otterbein SL et al. Carbon monoxide orchestrates a protective response through PPARγ. Immunity24(5), 601–610 (2006).
  • Nonas S, Miller I, Kawkitinarong K et al. Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury. Am. J. Respir. Crit. Care Med.173(10), 1130–1138 (2006).
  • Oshikawa K, Sugiyama Y. Gene expression of Toll-like receptors and associated molecules induced by inflammatory stimuli in the primary alveolar macrophage. Biochem. Biophys. Res. Commun.305(3), 649–655 (2003).
  • Everhart MB, Han W, Sherrill TP et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol.176(8), 4995–5005 (2006).
  • He Z, Zhu Y, Jiang H. Inhibiting Toll-like receptor 4 signaling ameliorates pulmonary fibrosis during acute lung injury induced by lipopolysaccharide: an experimental study. Respir. Res.10, 126 (2009).
  • Bachmaier K, Toya S, Gao X et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat. Med.13(8), 920–926 (2007).
  • Natarajan S, Kim J, Remick DG. Acute pulmonary lipopolysaccharide tolerance decreases TNF-α without reducing neutrophil recruitment. J. Immunol.181(12), 8402–8408 (2008).
  • Imamura S, Matsukawa A, Ohkawara S, Kagayama M, Yoshinaga M. Involvement of tumor necrosis factor-α, interleukin-1 β, interleukin-8, and interleukin-1 receptor antagonist in acute lung injury caused by local Shwartzman reaction. Pathol. Int.47(1), 16–24 (1997).
  • Sasaki J, Fujishima S, Iwamura H, Wakitani K, Aiso S, Aikawa N. Prior burn insult induces lethal acute lung injury in endotoxemic mice: effects of cytokine inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol.284(2), L270–L278 (2003).
  • Qiu H, Pan J, Zhao Y. [The role of TNF α, IL-1 β and MIP-1 α in LPS-induced organ injury]. Zhonghua Yi Xue Za Zhi76(4), 254–257 (1996).
  • Yang D, Tong L, Wang D, Wang Y, Wang X, Bai C. Roles of CC chemokine receptors (CCRs) on lipopolysaccharide-induced acute lung injury. Respir. Physiol. Neurobiol.170(3), 253–259 (2010).
  • Huang S, Paulauskis JD, Godleski JJ, Kobzik L. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation. Am. J. Pathol.141(4), 981–988 (1992).
  • O’Leary EC, Zuckerman SH. Glucocorticoid-mediated inhibition of neutrophil emigration in an endotoxin-induced rat pulmonary inflammation model occurs without an effect on airways MIP-2 levels. Am. J. Respir. Cell Mol. Biol.16(3), 267–274 (1997).
  • Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA. Role of macrophage inflammatory protein-1 α (MIP-1 α) in acute lung injury in rats. J. Immunol.154(9), 4793–4802 (1995).
  • Yamasawa H, Ishii Y, Kitamura S. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury. Inflammation23(3), 263–274 (1999).
  • Wang XQ, Zhou X, Zhou Y, Rong L, Gao L, Xu W. Low-dose dexamethasone alleviates lipopolysaccharide-induced acute lung injury in rats and upregulates pulmonary glucocorticoid receptors. Respirology13(6), 772–780 (2008).
  • Lai KN, Leung JC, Metz CN, Lai FM, Bucala R, Lan HY. Role for macrophage migration inhibitory factor in acute respiratory distress syndrome. J. Pathol.199(4), 496–508 (2003).
  • Chunsheng L, Peichun G, Xinhua H. Expression of intercellular adhesion molecule in lung tissues of experimental acute lung injury and the affect of Rhubarb on it. Chin. Med. Sci. J.15(2), 93–97 (2000).
  • Suntres ZE, Shek PN. Prophylaxis against lipopolysaccharide-induced lung injuries by liposome-entrapped dexamethasone in rats. Biochem. Pharmacol.59(9), 1155–1161 (2000).
  • Jansson AH, Eriksson C, Wang X. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats. Vascul. Pharmacol.43(2), 101–111 (2005).
  • Brandolini L, Asti C, Ruggieri V et al. Lipopolysaccharide-induced lung injury in mice. II. Evaluation of functional damage in isolated parenchyma strips. Pulm. Pharmacol. Ther.13(2), 71–78 (2000).
  • Sugita H, Yamaguchi Y, Ikei S, Ogawa M. Effects of propentofylline on tumor necrosis factor-α and cytokine-induced neutrophil chemoattractant production in rats with cerulein-induced pancreatitis and endotoxemia. Pancreas14(3), 267–275 (1997).
  • Michetti C, Coimbra R, Hoyt DB, Loomis W, Junger W, Wolf P. Pentoxifylline reduces acute lung injury in chronic endotoxemia. J. Surg. Res.115(1), 92–99 (2003).
  • Powers KA, Woo J, Khadaroo RG, Papia G, Kapus A, Rotstein OD. Hypertonic resuscitation of hemorrhagic shock upregulates the anti-inflammatory response by alveolar macrophages. Surgery134(2), 312–318 (2003).
  • Rizoli SB, Kapus A, Parodo J, Fan J, Rotstein OD. Hypertonic immunomodulation is reversible and accompanied by changes in CD11b expression. J. Surg. Res.83(2), 130–135 (1999).
  • Zhang X, Song K, Xiong H, Li H, Chu X, Deng X. Protective effect of florfenicol on acute lung injury induced by lipopolysaccharide in mice. Int. Immunopharmacol.9(13–14), 1525–1529 (2009).
  • Carney DE, McCann UG, Schiller HJ et al. Metalloproteinase inhibition prevents acute respiratory distress syndrome. J. Surg. Res.99(2), 245–252 (2001).
  • Leiva M, Ruiz-Bravo A, Jimenez-Valera M. Effects of telithromycin in in vitro and in vivo models of lipopolysaccharide-induced airway inflammation. Chest134(1), 20–29 (2008).
  • Inoue G. Effect of interleukin-10 (IL-10) on experimental LPS-induced acute lung injury. J. Infect. Chemother.6(1), 51–60 (2000).
  • Wu CL, Lin LY, Yang JS, Chan MC, Hsueh CM. Attenuation of lipopolysaccharide-induced acute lung injury by treatment with IL-10. Respirology14(4), 511–521 (2009).
  • Agorreta J, Garayoa M, Montuenga LM, Zulueta JJ. Effects of acute hypoxia and lipopolysaccharide on nitric oxide synthase-2 expression in acute lung injury. Am. J. Respir. Crit. Care Med.168(3), 287–296 (2003).
  • Baron RM, Carvajal IM, Fredenburgh LE et al. Nitric oxide synthase-2 down-regulates surfactant protein-B expression and enhances endotoxin-induced lung injury in mice. FASEB J.18(11), 1276–1278 (2004).
  • Zaedi S, Jesmin S, Maeda S et al. Alterations in gene expressions encoding preproET-1 and NOS in pulmonary tissue in endotoxemic rats. Exp. Biol. Med. (Maywood)231(6), 992–996 (2006).
  • Rudkowski JC, Barreiro E, Harfouche R et al. Roles of iNOS and nNOS in sepsis-induced pulmonary apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol.286(4), L793–L800 (2004).
  • Numata M, Suzuki S, Miyazawa N et al. Inhibition of inducible nitric oxide synthase prevents LPS-induced acute lung injury in dogs. J. Immunol.160(6), 3031–3037 (1998).
  • Koh Y, Kang JL, Park W et al. Inhaled nitric oxide down-regulates intrapulmonary nitric oxide production in lipopolysaccharide-induced acute lung injury. Crit. Care Med.29(6), 1169–1174 (2001).
  • Kermarrec N, Chollet-Martin S, Beloucif S, Faivre V, Gougerot-Pocidalo MA, Payen DM. Alveolar neutrophil oxidative burst and β2 integrin expression in experimental acute pulmonary inflammation are not modified by inhaled nitric oxide. Shock10(2), 129–134 (1998).
  • Bloomfield GL, Holloway S, Ridings PC et al. Pretreatment with inhaled nitric oxide inhibits neutrophil migration and oxidative activity resulting in attenuated sepsis-induced acute lung injury. Crit. Care Med.25(4), 584–593 (1997).
  • Klein A, Zils U, Bopp C, Gries A, Martin E, Gust R. Low-dose phosphodiesterase inhibition improves responsiveness to inhaled nitric oxide in isolated lungs from endotoxemic rats. J. Surg. Res.138(2), 224–230 (2007).
  • Chen J, Liu X, Shu Q, Li S, Luo F. Ghrelin attenuates lipopolysaccharide-induced acute lung injury through NO pathway. Med. Sci. Monit.14(7), BR141–BR146 (2008).
  • Brody AR, Salazar KD, Lankford SM. Mesenchymal stem cells modulate lung injury. Proc. Am. Thorac. Soc.7(2), 130–133 (2010).
  • Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med.4(9), e269 (2007).
  • Su X, Looney MR, Gupta N, Matthay MA. Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.297(1), L1–L5 (2009).
  • Yamada M, Kubo H, Kobayashi S et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J. Immunol.172(2), 1266–1272 (2004).
  • McCarter SD, Mei SH, Lai PF et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am. J. Respir. Crit. Care Med.175(10), 1014–1026 (2007).
  • Xu J, Qu J, Cao L et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J. Pathol.214(4), 472–481 (2008).
  • Wary KK, Vogel SM, Garrean S, Zhao YD, Malik AB. Requirement of α(4)β(1) and α(5)β(1) integrin expression in bone-marrow-derived progenitor cells in preventing endotoxin-induced lung vascular injury and edema in mice. Stem Cells27(12), 3112–3120 (2009).
  • Moore CC, Martin EN, Lee G et al. Eukaryotic translation initiation factor 5A small interference RNA-liposome complexes reduce inflammation and increase survival in murine models of severe sepsis and acute lung injury. J. Infect. Dis.198(9), 1407–1414 (2008).
  • Inoue S, Suzuki M, Nagashima Y et al. Transfer of heme oxygenase 1 cDNA by a replication-deficient adenovirus enhances interleukin 10 production from alveolar macrophages that attenuates lipopolysaccharide-induced acute lung injury in mice. Hum. Gene Ther.12(8), 967–979 (2001).
  • Li Y, Dong JB, Wu MP. Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur. J. Pharmacol.590(1–3), 417–422 (2008).
  • Idell S. Adult respiratory distress syndrome: do selective anticoagulants help? Am. J. Respir. Med.1(6), 383–391 (2002).
  • Murakami K, McGuire R, Cox RA et al. Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep. Shock18(3), 236–241 (2002).
  • Dixon B, Santamaria JD, Campbell DJ. A Phase 1 trial of nebulised heparin in acute lung injury. Crit. Care12(3), R64 (2008).
  • Wang M, He J, Mei B, Ma X, Huo Z. Therapeutic effects and anti-inflammatory mechanisms of heparin on acute lung injury in rabbits. Acad. Emerg. Med.15(7), 656–663 (2008).
  • Darien BJ, Fareed J, Centgraf KS et al. Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock9(4), 274–281 (1998).
  • Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T. High dose antithrombin III inhibits HMGB1 and improves endotoxin-induced acute lung injury in rats. Intensive Care Med.34(2), 361–367 (2008).
  • Hagiwara S, Iwasaka H, Matsumoto S, Hasegawa A, Yasuda N, Noguchi T. In vivo and in vitro effects of the anticoagulant, thrombomodulin, on the inflammatory response in rodent models. Shock33(3), 282–288 (2010).
  • Pan P, Cardinal J, Dhupar R et al. Low-dose cisplatin administration in murine cecal ligation and puncture prevents the systemic release of HMGB1 and attenuates lethality. J. Leukoc. Biol.86(3), 625–632 (2009).
  • Crouser ED, Julian MW, Joshi MS et al. Cyclosporin A ameliorates mitochondrial ultrastructural injury in the ileum during acute endotoxemia. Crit. Care Med.30(12), 2722–2728 (2002).
  • Koshika T, Ishizaka A, Nagatomi I, Sudo Y, Hasegawa N, Goto T. Pretreatment with FK506 improves survival rate and gas exchange in canine model of acute lung injury. Am. J. Respir. Crit. Care Med.163(1), 79–84 (2001).
  • Dellinger RP, Levy MM, Carlet JM et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med.34(1), 17–60 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.