29
Views
8
CrossRef citations to date
0
Altmetric
Perspective

Targeting airway smooth muscle in airways diseases: an old concept with new twists

, &
Pages 767-777 | Published online: 09 Jan 2014

References

  • Dekkers BG, Maarsingh H, Meurs H, Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc. Am. Thorac. Soc.6(8), 683–692 (2009).
  • Lazaar AL, Panettieri RA Jr. Airway smooth muscle: a modulator of airway remodeling in asthma. J. Allergy Clin. Immunol.116(3), 488–495 (2005).
  • Damera G, Panettieri RA Jr. Does airway smooth muscle express an inflammatory phenotype in asthma? Br. J. Pharmacol.163(1), 68–80 (2011).
  • Sandstrom T. Effects of pharmacological and non-pharmacological interventions. Clin. Respir. J.4(Suppl. 1), 41–48 (2010).
  • Thomson NC, Rubin AS, Niven RM et al. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm. Med.11, 8 (2011).
  • Pavord ID, Cox G, Thomson NC et al. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am. J. Respir. Crit. Care Med.176(12), 1185–1191 (2007).
  • An SS, Bai TR, Bates JH et al. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur. Respir. J.29(5), 834–860 (2007).
  • Damera G, Jiang M, Zhao H et al. Aclidinium bromide abrogates allergen-induced hyperresponsiveness and reduces eosinophilia in murine model of airway inflammation. Eur. J. Pharmacol.649(1–3), 349–353 (2010).
  • van Noord JA, Aumann JL, Janssens E et al. Effects of tiotropium with and without formoterol on airflow obstruction and resting hyperinflation in patients with COPD. Chest129(3), 509–517 (2006).
  • Tashkin DP, Littner M, Andrews CP, Tomlinson L, Rinehart M, Denis-Mize K. Concomitant treatment with nebulized formoterol and tiotropium in subjects with COPD: a placebo-controlled trial. Respir. Med.102(4), 479–487 (2008).
  • Ammit AJ, Burgess JK, Hirst SJ et al. The effect of asthma therapeutics on signalling and transcriptional regulation of airway smooth muscle function. Pulm. Pharmacol. Ther.22(5), 446–454 (2009).
  • Trian T, Burgess JK, Niimi K et al. β2-agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D. PLoS One6(5), e20000 (2011).
  • Adcock IM, Chung KF, Caramori G, Ito K. Kinase inhibitors and airway inflammation. Eur. J. Pharmacol.533(1–3), 118–132 (2006).
  • Chong J, Poole P, Leung B, Black PN. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev.5, CD002309 (2011).
  • Hackett TL, Holloway R, Holgate ST, Warner JA. Dynamics of pro-inflammatory and anti-inflammatory cytokine release during acute inflammation in chronic obstructive pulmonary disease: an ex vivo study. Respir. Res.9, 47 (2008).
  • Thomas PS, Heywood G. Effects of inhaled tumour necrosis factor α in subjects with mild asthma. Thorax57(9), 774–778 (2002).
  • Jain D, Keslacy S, Tliba O et al. Essential role of IFNβ and CD38 in TNFα-induced airway smooth muscle hyper-responsiveness. Immunobiology213(6), 499–509 (2008).
  • Jude JA, Solway J, Panettieri RA Jr, Walseth TF, Kannan MS. Differential induction of CD38 expression by TNF-{α} in asthmatic airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.299(6), L879–L890 (2010).
  • Prefontaine D, Lajoie-Kadoch S, Foley S et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol.183(8), 5094–5103 (2009).
  • Damera G, Zhao H, Wang M et al. Ozone modulates IL-6 secretion in human airway epithelial and smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.296(4), L674–L683 (2009).
  • Redhu NS, Saleh A, Halayko AJ, Ali AS, Gounni AS. Essential role of NF-{κ}B and AP-1 transcription factors in TNF-{α}-induced TSLP expression in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.300(3), L479–L485 (2011).
  • Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. J. Immunol.184(12), 7134–7143 (2010).
  • Hughes JM, Arthur CA, Baracho S et al. Human eosinophil-airway smooth muscle cell interactions. Mediators Inflamm.9(2), 93–99 (2000).
  • Lee CW, Lin CC, Luo SF et al. Tumor necrosis factor-α enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells. Mol. Pharmacol.73(5), 1454–1464 (2008).
  • Gruenberg D, Busse W. Biologic therapies for asthma. Curr. Opin. Pulm. Med.16(1), 19–24 (2010).
  • Erin EM, Leaker BR, Nicholson GC et al. The effects of a monoclonal antibody directed against tumor necrosis factor-α in asthma. Am. J. Respir. Crit. Care Med.174(7), 753–762 (2006).
  • Howarth PH, Babu KS, Arshad HS et al. Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax60(12), 1012–1018 (2005).
  • Berry MA, Hargadon B, Shelley M et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med.354(7), 697–708 (2006).
  • Morjaria JB, Chauhan AJ, Babu KS, Polosa R, Davies DE, Holgate ST. The role of a soluble TNF-α receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial. Thorax63(7), 584–591 (2008).
  • Clarke D, Damera G, Sukkar MB, Tliba O. Transcriptional regulation of cytokine function in airway smooth muscle cells. Pulm. Pharmacol. Ther.22(5), 436–445 (2009).
  • Tliba O, Amrani Y, Panettieri RA Jr. Is airway smooth muscle the ‘missing link’ modulating airway inflammation in asthma? Chest133(1), 236–242 (2008).
  • Cardell LO, Uddman R, Zhang Y, Adner M. Interleukin-1β up-regulates tumor necrosis factor receptors in the mouse airways. Pulm. Pharmacol. Ther.21(4), 675–681 (2008).
  • Liang KC, Lee CW, Lin WN et al. Interleukin-1β induces MMP-9 expression via p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-κB signaling pathways in human tracheal smooth muscle cells. J. Cell. Physiol.211(3), 759–770 (2007).
  • Chan V, Burgess JK, Ratoff JC et al. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med.174(4), 379–385 (2006).
  • Cooper PR, Lamb R, Day ND et al. TLR3 activation stimulates cytokine secretion without altering agonist-induced human small airway contraction or relaxation. Am. J. Physiol. Lung Cell. Mol. Physiol.297(3), L530–L537 (2009).
  • Cooper PR, Mesaros AC, Zhang J et al. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice. PLoS One5(4), e10235 (2010).
  • Ohta Y, Hayashi M, Kanemaru T, Abe K, Ito Y, Oike M. Dual modulation of airway smooth muscle contraction by Th2 cytokines via matrix metalloproteinase-1 production. J. Immunol.180(6), 4191–4199 (2008).
  • Peng Q, Matsuda T, Hirst SJ. Signaling pathways regulating interleukin-13-stimulated chemokine release from airway smooth muscle. Am. J. Respir. Crit. Care Med.169(5), 596–603 (2004).
  • Nath P, Leung SY, Williams AS et al. Complete inhibition of allergic airway inflammation and remodelling in quadruple IL-4/5/9/13-/- mice. Clin. Exp. Allergy37(10), 1427–1435 (2007).
  • Amrani Y, Syed F, Huang C et al. Expression and activation of the oxytocin receptor in airway smooth muscle cells: regulation by TNFα and IL-13. Respir. Res.11, 104 (2010).
  • Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two Phase 2a studies. Lancet370(9596), 1422–1431 (2007).
  • Kunikata T, Yamane H, Segi E et al. Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat. Immunol.6(5), 524–531 (2005).
  • Boyce JA. Eicosanoids in asthma, allergic inflammation, and host defense. Curr. Mol. Med.8(5), 335–349 (2008).
  • Hallstrand TS, Henderson WR Jr. An update on the role of leukotrienes in asthma. Curr. Opin. Allergy Clin. Immunol.10(1), 60–66 (2010).
  • Han J, Jia Y, Takeda K et al. Montelukast during primary infection prevents airway hyperresponsiveness and inflammation after reinfection with respiratory syncytial virus. Am. J. Respir. Crit. Care Med.182(4), 455–463 (2010).
  • Bjermer L, Bisgaard H, Bousquet J et al. Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial. BMJ327(7420), 891 (2003).
  • Fogel RB, Rosario N, Aristizabal G et al. Effect of montelukast or salmeterol added to inhaled fluticasone on exercise-induced bronchoconstriction in children. Ann. Allergy Asthma Immunol.104(6), 511–517 (2010).
  • Clarke DL, Dakshinamurti S, Larsson AK, Ward JE, Yamasaki A. Lipid metabolites as regulators of airway smooth muscle function. Pulm. Pharmacol. Ther.22(5), 426–435 (2009).
  • Gounni AS, Wellemans V, Yang J et al. Human airway smooth muscle cells express the high affinity receptor for IgE (Fc ε RI): a critical role of Fc ε RI in human airway smooth muscle cell function. J. Immunol.175(4), 2613–2621 (2005).
  • Redhu NS, Saleh A, Shan L et al. Proinflammatory and Th2 cytokines regulate the high affinity IgE receptor (FcεRI) and IgE-dependant activation of human airway smooth muscle cells. PLoS One4(7), e6153 (2009).
  • Djukanovic R, Wilson SJ, Kraft M et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med.170(6), 583–593 (2004).
  • Johnson PR, Burgess JK, Underwood PA et al. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J. Allergy Clin. Immunol.113, 690–696 (2004).
  • Clarke DL, Clifford RL, Jindarat S et al. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein. J. Biol. Chem.285(38), 29101–29110 (2010).
  • Christodoulopoulos P, Leung DY, Elliott MW et al. Increased number of glucocorticoid receptor-β-expressing cells in the airways in fatal asthma. J. Allergy Clin. Immunol.106(3), 479–484 (2000).
  • Tliba O, Damera G, Banerjee A et al. Cytokines induce an early steroid resistance in airway smooth muscle cells: novel role of interferon regulatory factor-1. Am. J. Respir. Cell Mol. Biol.38(4), 463–472 (2008).
  • Bhandare R, Damera G, Banerjee A et al. Glucocorticoid receptor interacting protein-1 restores glucocorticoid responsiveness in steroid-resistant airway structural cells. Am. J. Respir. Cell Mol. Biol.42(1), 9–15 (2010).
  • Nakao F, Ihara K, Kusuhara K et al. Association of IFN-γ and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. J. Allergy Clin. Immunol.107(3), 499–504 (2001).
  • Yamada K, Elliott WM, Hayashi S et al. Latent adenoviral infection modifies the steroid response in allergic lung inflammation. J. Allergy Clin. Immunol.106(5), 844–851 (2000).
  • Banerjee A, Damera G, Bhandare R et al. Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br. J. Pharmacol.155(1), 84–92 (2008).
  • Bosse Y, Maghni K, Hudson TJ. 1α,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol. Genomics29(2), 161–168 (2007).
  • Song Y, Qi H, Wu C. Effect of 1,25-(OH)2D3 (a vitamin D analogue) on passively sensitized human airway smooth muscle cells. Respirology12(4), 486–494 (2007).
  • Xystrakis E, Kusumakar S, Boswell S et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Invest.116(1), 146–155 (2006).
  • Chaudhuri N, Whyte MK, Sabroe I. Reducing the toll of inflammatory lung disease. Chest131(5), 1550–1556 (2007).
  • Sukkar MB, Xie S, Khorasani NM et al. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J. Allergy Clin. Immunol.118(3), 641–648 (2006).
  • Lin WN, Luo SF, Lee CW, Wang CC, Wang JS, Yang CM. Involvement of MAPKs and NF-κB in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells. Cell. Signal.19(6), 1258–1267 (2007).
  • Chiou YL, Lin CY. Der p2 activates airway smooth muscle cells in a TLR2/MyD88-dependent manner to induce an inflammatory response. J. Cell. Physiol.220(2), 311–318 (2009).
  • Bachar O, Adner M, Uddman R, Cardell LO. Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-κ B signaling pathways. Eur. J. Immunol.34(4), 1196–1207 (2004).
  • Morris GE, Whyte MK, Martin GF, Jose PJ, Dower SK, Sabroe I. Agonists of Toll-like receptors 2 and 4 activate airway smooth muscle via mononuclear leukocytes. Am. J. Respir. Crit. Care Med.171(8), 814–822 (2005).
  • Oliver BG, Johnston SL, Baraket M et al. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respir. Res.7(1), 71 (2006).
  • Gern JE. The ABCs of rhinoviruses, wheezing, and asthma. J. Virol.84(15), 7418–7426 (2010).
  • Mackay IM. Human rhinoviruses: the cold wars resume. J. Clin. Virol.42(4), 297–320 (2008).
  • Nagarkar DR, Wang Q, Shim J et al. CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. J. Immunol.183(10), 6698–6707 (2009).
  • Empey KM, Peebles RS Jr, Kolls JK. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus. Clin. Infect. Dis.50(9), 1258–1267 (2010).
  • Corne JM, Marshall C, Smith S et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet359(9309), 831–834 (2002).
  • Kling S, Donninger H, Williams Z et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin. Exp. Allergy35(5), 672–678 (2005).
  • Grunstein MM, Hakonarson H, Maskeri N, Chuang S. Autocrine cytokine signaling mediates effects of rhinovirus on airway responsiveness. Am. J. Physiol. Lung Cell Mol. Physiol.278(6), L1146–L1153 (2000).
  • Kuo C, Lim S, King NJ et al. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.300(6), L951–L957 (2011).
  • Billington CK, Pascual RM, Hawkins ML, Penn RB, Hall IP. Interleukin-1β and rhinovirus sensitize adenylyl cyclase in human airway smooth-muscle cells. Am. J. Respir. Cell Mol. Biol.24(5), 633–639 (2001).
  • Trian T, Moir LM, Ge Q et al. Rhinovirus-induced exacerbations of asthma: how is the {β}2-adrenoceptor implicated? Am. J. Respir. Cell Mol. Biol.43(2), 227–233 (2010).
  • Cooper PR, Panettieri RA Jr. Steroids completely reverse albuterol-induced β(2)-adrenergic receptor tolerance in human small airways. J. Allergy Clin. Immunol.122(4), 734–740 (2008).
  • Moore PE, Cunningham G, Calder MM et al. Respiratory syncytial virus infection reduces β2-adrenergic responses in human airway smooth muscle. Am. J. Respir. Cell Mol. Biol.35(5), 559–564 (2006).
  • al-Nakib W, Higgins PG, Barrow GI et al. Suppression of colds in human volunteers challenged with rhinovirus by a new synthetic drug (R61837). Antimicrob. Agents Chemother.33(4), 522–525 (1989).
  • Turner RB, Dutko FJ, Goldstein NH, Lockwood G, Hayden FG. Efficacy of oral WIN 54954 for prophylaxis of experimental rhinovirus infection. Antimicrob. Agents Chemother.37(2), 297–300 (1993).
  • Hayden FG, Hipskind GJ, Woerner DH et al. Intranasal pirodavir (R77,975) treatment of rhinovirus colds. Antimicrob. Agents Chemother.39(2), 290–294 (1995).
  • Edwards MR, Kebadze T, Johnson MW, Johnston SL. New treatment regimes for virus-induced exacerbations of asthma. Pulm. Pharmacol. Ther.19(5), 320–334 (2006).
  • Koziol-White CJ, Panettieri RA Jr. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol. Rev.242, 178–185 (2011).
  • Cox G, Thomson NC, Rubin AS et al. Asthma control during the year after bronchial thermoplasty. N. Engl. J. Med.356(13), 1327–1337 (2007).
  • Castro M, Rubin AS, Laviolette M et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am. J. Respir. Crit. Care Med.181(2), 116–124 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.