130
Views
9
CrossRef citations to date
0
Altmetric
Special Report

Artificial airways for the study of respiratory disease

&
Pages 757-765 | Published online: 09 Jan 2014

References

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Pierrou S, Broberg P, O’Donnell RA et al. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.175(6), 577–586 (2007).
  • Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never- smokers, smokers, and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol.23(4), 530–536 (2000).
  • Wark PA, Johnston SL, Bucchieri F et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med.201(6), 937–947 (2005).
  • Schneider D, Ganesan S, Comstock AT et al. Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.182(3), 332–340 (2010).
  • Teran LM, Carroll M, Frew AJ et al. Neutrophil influx and interleukin-8 release after segmental allergen or saline challenge in asthmatics. Int. Arch. Allergy Immunol.107(1–3), 374–375 (1995).
  • Krishna MT, Madden J, Teran LM et al. Effects of 0.2 ppm ozone on biomarkers of inflammation in bronchoalveolar lavage fluid and bronchial mucosa of healthy subjects. Eur. Respir. J.11(6), 1294–1300 (1998).
  • Pathmanathan S, Krishna MT, Blomberg A et al. Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occup. Environ. Med.60(11), 892–896 (2003).
  • Salvi S, Nordenhall C, Blomberg A et al. Acute exposure to diesel exhaust increases IL-8 and GRO-α production in healthy human airways. Am. J. Respir. Crit. Care Med.161, 550–557 (2000).
  • Shapiro SD. Animal models of asthma: pro: allergic avoidance of animal (model[s]) is not an option. Am. J. Respir. Crit. Care Med.174(11), 1171–1173 (2006).
  • Shapiro SD. The use of transgenic mice for modeling airways disease. Pulm. Pharmacol. Ther.21(5), 699–701 (2008).
  • Wenzel S, Holgate ST. The mouse trap: it still yields few answers in asthma. Am. J. Respir. Crit. Care Med.174(11), 1173–1176 (2006).
  • Jeffery PK. The development of large and small airways. Am. J. Resp. Crit. Care Med.157, S174–S180 (1998).
  • Jeffery PK. Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest.117(5 Suppl. 1), S251–S260 (2000).
  • Swindle EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches. J. Allergy Clin. Immunol.124(1), 23–34 (2009).
  • Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat. Rec.293(6), 947–954 (2010).
  • Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc.1(3), 176–183 (2004).
  • Djukanovic R, Dahl R, Jarjour N, Aalbers R. Safety of biopsies and bronchoalveolar lavage. Eur. Respir. J. Suppl.26, S39–S41 (1998).
  • Bucchieri F, Puddicombe SM, Lordan JL et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am. J. Respir. Cell Mol. Biol.27(2), 179–185 (2002).
  • Richter A, Puddicombe SM, Lordan JL et al. The contribution of interleukin (IL)-4 and IL-13 to the epithelial–mesenchymal trophic unit in asthma. Am. J. Respir. Cell Mol. Biol.25(3), 385–391 (2001).
  • Johnson PR, Roth M, Tamm M et al. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med.164(3), 474–477 (2001).
  • Moldobaeva A, Wagner EM. Heterogeneity of bronchial endothelial cell permeability. Am. J. Physiol. Lung Cell Mol. Physiol.283(3), L520–L527 (2002).
  • Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol.14(1), 104–112 (1996).
  • de Jong PM, van Sterkenburg MA, Hesseling SC et al. Ciliogenesis in human bronchial epithelial cells cultured at the air–liquid interface. Am. J. Respir. Cell Mol. Biol.10(3), 271–277 (1994).
  • Jain R, Pan J, Driscoll JA et al. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am. J. Respir. Cell Mol. Biol.43(6), 731–739 (2010).
  • Yoshisue H, Puddicombe SM, Wilson SJ et al. Characterization of ciliated bronchial epithelium 1, a ciliated cell-associated gene induced during mucociliary differentiation. Am. J. Respir. Cell Mol. Biol.31(5), 491–500 (2004).
  • Ostrowski LE, Blackburn K, Radde KM et al. A proteomic analysis of human cilia: identification of novel components. Mol. Cell Proteomics1(6), 451–465 (2002).
  • Gomperts BN, Kim LJ, Flaherty SA, Hackett BP. IL-13 regulates cilia loss and FOXJ1 expression in human airway epithelium. Am. J. Respir. Cell Mol. Biol.37(3), 339–346 (2007).
  • Turner J, Roger J, Fitau J et al. Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am. J. Respir. Cell Mol. Biol.44(3), 276–284 (2011).
  • Laoukili J, Perret E, Willems T et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Invest.108(12), 1817–1824 (2001).
  • Danahay H, Atherton H, Jones G, Bridges RJ, Poll CT. Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.282(2), L226–L236 (2002).
  • Deslee G, Dury S, Perotin JM et al. Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD. Respir. Res.8, 86 (2007).
  • Lehmann T, Torky AR, Stehfest E, Hofmann S, Foth H. Expression of lung resistance-related protein, LRP, and multidrug resistance-related protein, MRP1, in normal human lung cells in long-term cultures. Arch. Toxicol.79(10), 600–609 (2005).
  • Devalia JL, Sapsford RJ, Wells CW, Richman P, Davies RJ. Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir. Med.84(4), 303–312 (1990).
  • Maunders H, Patwardhan S, Phillips J, Clack A, Richter A. Human bronchial epithelial cell transcriptome: gene expression changes following acute exposure to whole cigarette smoke in vitro. Am. J. Physiol. Lung Cell Mol. Physiol.292(5), L1248–L1256 (2007).
  • Muller L, Comte P, Czerwinski J et al. New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. Environ. Sci. Technol.44(7), 2632–2638 (2010).
  • Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol.32(4), 281–289 (2005).
  • Grek CL, Newton DA, Qiu Y, Wen X, Spyropoulos DD, Baatz JE. Characterization of alveolar epithelial cells cultured in semipermeable hollow fibers. Exp. Lung Res.35(2), 155–174 (2009).
  • Halayko AJ, Camoretti-Mercado B, Forsythe SM et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. Am. J. Physiol.276(1 Pt 1), L197–L206 (1999).
  • Johnson PR, Burgess JK, Underwood PA et al. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J. Allergy Clin. Immunol.113(4), 690–696 (2004).
  • Andrei G, Duraffour S, Van den Oord J, Snoeck R. Epithelial raft cultures for investigations of virus growth, pathogenesis and efficacy of antiviral agents. Antiviral Res.85(3), 431–449 (2010).
  • Swartz MA, Tschumperlin DJ, Kamm RD, Drazen JM. Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc. Natl Acad. Sci.98(11), 6180–6185 (2001).
  • Damera G, Zhao H, Wang M et al. Ozone modulates IL-6 secretion in human airway epithelial and smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol.296(4), L674–L683 (2009).
  • Mio T, Liu XD, Adachi Y et al. Human bronchial epithelial cells modulate collagen gel contraction by fibroblasts. Am. J. Physiol.274(1 Pt 1), L119–L126 (1998).
  • Choe MM, Sporn PH, Swartz MA. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am. J. Respir. Cell Mol. Biol.35(3), 306–313 (2006).
  • Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab. Invest.79(4), 395–405 (1999).
  • Paquette JS, Moulin V, Tremblay P et al. Tissue-engineered human asthmatic bronchial equivalents. Eur. Cell Mater.7, 1–11 (2004).
  • Malavia NK, Raub CB, Mahon SB, Brenner M, Panettieri RA Jr, George SC. Airway epithelium stimulates smooth muscle proliferation. Am. J. Respir. Cell Mol. Biol.41(3), 297–304 (2009).
  • Davies DE, Wicks J, Powell RM, Puddicombe SM, Holgate ST. Airway remodelling in asthma – new insights. J. Allergy Clin. Immunol.111, 215–225 (2003).
  • Tomei AA, Choe MM, Swartz MA. Effects of dynamic compression on lentiviral transduction in an in vitro airway wall model. Am. J. Physiol. Lung Cell Mol. Physiol.294(1), L79–L86 (2008).
  • Choe MM, Sporn PH, Swartz MA. An in vitro airway wall model of remodeling. Am. J. Physiol. Lung Cell Mol. Physiol.285(2), L427–L433 (2003).
  • Tschumperlin DJ, Shively JD, Kikuchi T, Drazen JM. Mechanical stress triggers selective release of fibrotic mediators from bronchial epithelium. Am. J. Respir. Cell Mol. Biol.28(2), 142–149 (2003).
  • Grainge CL, Lau LC, Ward JA et al. Effect of bronchoconstriction on airway remodeling in asthma. N. Engl. J. Med.364(21), 2006–2015 (2011).
  • Lechner JF, Haugen A, McClendon IA, Pettis EW. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In vitro.18(7), 633–642 (1982).
  • Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev. Biol.24(5), 420–428 (1988).
  • Wu R, Zhao YH, Chang MM. Growth and differentiation of conducting airway epithelial cells in culture. Eur. Respir. J.10(10), 2398–2403 (1997).
  • Rusznak C, Sapsford RJ, Devalia JL et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro. Am. J. Respir. Cell Mol. Biol.20(6), 1238–1250 (1999).
  • Thompson HG, Truong DT, Griffith CK, George SC. A three-dimensional in vitro model of angiogenesis in the airway mucosa. Pulm. Pharmacol. Ther.20(2), 141–148 (2007).
  • Chowdhury F, Howat WJ, Phillips GJ, Lackie PM. Interactions between endothelial cells and epithelial cells in a combined cell model of airway mucosa: effects on tight junction permeability. Exp. Lung Res.36(1), 1–11 (2010).
  • Mul FP, Zuurbier AE, Janssen H et al. Sequential migration of neutrophils across monolayers of endothelial and epithelial cells. J. Leukoc. Biol.68(4), 529–537 (2000).
  • Pichavant M, Charbonnier AS, Taront S et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol.115(4), 771–778 (2005).
  • Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am. J. Respir. Cell Mol. Biol.36(6), 669–677 (2007).
  • Rothen-Rutishauser B, Blank F, Muhlfeld C, Gehr P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin. Drug Metab. Toxicol.4(8), 1075–1089 (2008).
  • Jaffar Z, Roberts K, Pandit A, Linsley P, Djukanovic R, Holgate S. B7 costimulation is required for IL-5 and IL-13 secretion by bronchial biopsy tissue of atopic asthmatic subjects in response to allergen stimulation. Am. J. Respir. Cell Mol. Biol.20(1), 153–162 (1999).
  • Hidi R, Riches V, Al Ali M et al. Role of B7-CD28/CTLA-4 costimulation and NF-κB in allergen-induced T cell chemotaxis by IL-16 and RANTES. J. Immunol.164(1), 412–418 (2000).
  • Lordan J, Jaffar Z, Roberts K et al. The role of CD28-B7 costimulation in allergen-induced cytokine release by the bronchial mucosa from patients with moderately severe asthma. Am. J. Respir. Cell Mol. Biol.108, 976–981 (2000).
  • Dent G, Hosking LA, Lordan JL et al. Differential roles of IL-16 and CD28/B7 costimulation in the generation of T-lymphocyte chemotactic activity in the bronchial mucosa of mild and moderate asthmatic individuals. J. Allergy Clin. Immunol.110(6), 906–914 (2002).
  • Vijayanand P, Durkin K, Hartmann G et al. Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J. Immunol.184(8), 4568–4574 (2010).
  • Hauck RW, Schulz C, Schomig A, Hoffman RK, Panettieri RA Jr. α-thrombin stimulates contraction of human bronchial rings by activation of protease-activated receptors. Am. J. Physiol.277(1 Pt 1), L22–L29 (1999).
  • Graaf IA, Groothuis GM, Olinga P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin. Drug Metab. Toxicol.3(6), 879–898 (2007).
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science328(5986), 1662–1668 (2010).
  • Douville NJ, Tung YC, Li R, Wang JD, El-Sayed ME, Takayama S. Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers. Anal. Chem.82(6), 2505–2511 (2010).
  • Douville NJ, Zamankhan P, Tung YC et al. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip11(4), 609–619 (2011).
  • Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air–liquid interface. Biomed. Microdevices11, 1081–1089 (2009).
  • Nalayanda DD, Wang Q, Fulton WB, Wang TH, Abdullah F. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels. J. Pediatr. Surg.45(1), 45–51 (2010).
  • Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation74(4), 141–148 (2006).
  • Hackett TL, Shaheen F, Johnson A et al. Characterization of side population cells from human airway epithelium. Stem Cells26(10), 2576–2585 (2008).
  • Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model Mech.3(9–10), 545–556 (2010).
  • Lutolf MP. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr. Biol. (Camb.)1(3), 235–241 (2009).
  • Sun T, Swindle EJ, Collins JE, Holloway JA, Davies DE, Morgan H. On-chip epithelial barrier function assays using electrical impedance spectroscopy. Lab Chip10(12), 1611–1617 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.