100
Views
25
CrossRef citations to date
0
Altmetric
Editorial

Anionic pulmonary surfactant lipid regulation of innate immunity

, &
Pages 243-246 | Published online: 09 Jan 2014

References

  • Wright JR. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 5(1), 58–68 (2005).
  • Lewis JF, Jobe AH. Surfactant and the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 147(1), 218–233 (1993).
  • Nieman GF, Bredenberg CE, Clark WR, West NR. Alveolar function following surfactant deactivation. J. Appl. Physiol. 51(4), 895–904 (1981).
  • Enhorning G, Holm BA. Disruption of pulmonary surfactant’s ability to maintain openness of a narrow tube. J. Appl. Physiol. 74(6), 2922–2927 (1993).
  • Schmidt R, Meier U, Markart P et al. Altered fatty acid composition of lung surfactant phospholipids in interstitial lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 283(5), L1079–L1085 (2002).
  • Wright SM, Hockey PM, Enhorning G et al. Altered airway surfactant phospholipid composition and reduced lung function in asthma. J. Appl. Physiol. 89(4), 1283–1292 (2000).
  • Zuo YY, Veldhuizen RA, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant – inhibition, enhancement and evaluation. Biochim. Biophys. Acta 1778(10), 1947–1977 (2008).
  • Numata M, Voelker DR. Sutherland ER Asthma and infections. In: Lung Biology in Health and Disease. Martin RJ, (Eds). Informa Healthcare, NY, USA, 45–165 (2010).
  • Kuronuma K, Mitsuzawa H, Takeda K et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J. Biol. Chem. 284(38), 25488–25500 (2009).
  • Kandasamy P, Zarini S, Chan ED, Leslie CC, Murphy RC, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J. Biol. Chem. 286(10), 7841–7853 (2011).
  • Mueller M, Brandenburg K, Dedrick R, Schromm AB, Seydel U. Phospholipids inhibit lipopolysaccharide (LPS)-induced cell activation: a role for LPS-binding protein. J. Immunol. 174(2), 1091–1096 (2005).
  • Hashimoto M, Asai Y, Ogawa T. Treponemal phospholipids inhibit innate immune responses induced by pathogen-associated molecular patterns. J. Biol. Chem. 278(45), 44205–44213 (2003).
  • Numata M, Chu HW, Dakhama A, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl Acad. Sci. USA 107(1), 320–325 (2010).
  • Numata M, Kandasamy P, Nagashima Y et al. Phosphatidylglycerol suppresses influenza A virus infection. Am. J. Respir. Cell Mol. Biol. 46, 479–487 (2012).
  • Lee WL, Downey GP. Neutrophil activation and acute lung injury. Curr. Opin. Crit. Care 7(1), 1–7 (2001).
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N. Engl. J. Med. 342(18), 1334–1349 (2000).
  • Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med. 169(1), 333–338 (1989).
  • Kline JN, Cowden JD, Hunninghake GW et al. Variable airway responsiveness to inhaled lipopolysaccharide. Am. J. Respir. Crit. Care Med. 160(1), 297–303 (1999).
  • Nagai Y, Akashi S, Nagafuku M et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3(7), 667–672 (2002).
  • Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396), 2085–2088 (1998).
  • Savov JD, Gavett SH, Brass DM, Costa DL, Schwartz DA. Neutrophils play a critical role in development of LPS-induced airway disease. Am. J. Physiol. Lung Cell Mol. Physiol. 283(5), L952–L962 (2002).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 4(7), 499–511 (2004).
  • Shimizu T, Kida Y, Kuwano K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J. Immunol. 175(7), 4641–4646 (2005).
  • Seya T, Matsumoto M. A lipoprotein family from Mycoplasma fermentans confers host immune activation through Toll-like receptor 2. Int. J. Biochem. Cell Biol. 34(8), 901–906 (2002).
  • Aliprantis AO, Yang RB, Mark MR et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285(5428), 736–739 (1999).
  • Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97(25), 13766–13771 (2000).
  • Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1(5), 398–401 (2000).
  • Hall CB. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 344(25), 1917–1928 (2001).
  • MacDowell AL, Bacharier LB. Infectious triggers of asthma. Immunol. Allergy Clin. North Am. 25(1), 45–66 (2005).
  • Wedzicka JA. Exacerbations: etiology and pathophysiologic mechanisms. Chest 121(5), S136–S141 (2002).
  • Glezen WP. Clinical practice. Prevention and treatment of seasonal influenza. N. Engl. J. Med. 359(24), 2579–2585 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.