108
Views
14
CrossRef citations to date
0
Altmetric
Special Report

Optimizing treatments for lymphangioleiomyomatosis

&
Pages 267-276 | Published online: 09 Jan 2014

References

  • Ryu JH, Moss J, Beck GJ et al.; NHLBI LAM Registry Group. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am. J. Respir. Crit. Care Med. 173(1), 105–111 (2006).
  • Ferrans VJ, Yu ZX, Nelson WK et al. Lymphangioleiomyomatosis (LAM). A review of clinical and morphological features. J. Nippon. Med. Sch. 67, 311–329 (2000).
  • Johnson SR, Cordier JF, Lazor R et al.; Review Panel of the ERS LAM Task Force. European Respiratory Society guidelines for the diagnosis and management of lymphangioleiomyomatosis. Eur. Respir. J. 35(1), 14–26 (2010).
  • Berger U, Khaghani A, Pomerance A, Yacoub MH, Coombes RC. Pulmonary lymphangioleiomyomatosis and steroid receptors. An immunocytochemical study. Am. J. Clin. Pathol. 93(5), 609–614 (1990).
  • Ohori NP, Yousem SA, Sonmez-Alpan E, Colby TV. Estrogen and progesterone receptors in lymphangioleiomyomatosis, epithelioid hemangioendothelioma, and sclerosing hemangioma of the lung. Am. J. Clin. Pathol. 96(4), 529–535 (1991).
  • Valencia JC, Pacheco-Rodriguez G, Carmona AK et al. Tissue-specific renin-angiotensin system in pulmonary lymphangioleiomyomatosis. Am. J. Respir. Cell Mol. Biol. 35(1), 40–47 (2006).
  • Valencia JC, Matsui K, Bondy C et al. Distribution and mRNA expression of insulin-like growth factor system in pulmonary lymphangioleiomyomatosis. J. Investig. Med. 49(5), 421–433 (2001).
  • Pacheco-Rodriguez G, Steagall WK, Crooks DM et al. TSC2 loss in lymphangioleiomyomatosis cells correlated with expression of CD44v6, a molecular determinant of metastasis. Cancer Res. 67(21), 10573–10581 (2007).
  • Pacheco-Rodriguez G, Kumaki F, Steagall WK et al. Chemokine-enhanced chemotaxis of lymphangioleiomyomatosis cells with mutations in the tumor suppressor TSC2 gene. J. Immunol. 182(3), 1270–1277 (2009).
  • Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann. NY Acad. Sci. 615, 125–127 (1991).
  • Urban TJ, Lazor R, Lacronique J et al. Pulmonary lymphangioleiomyomatosis, a study of 69 patients. Medicine 78, 321–337 (1999).
  • Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP. Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am. J. Hum. Genet. 62(4), 810–815 (1998).
  • Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 97(11), 6085–6090 (2000).
  • Goncharova EA, Goncharov DA, Eszterhas A et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem. 277(34), 30958–30967 (2002).
  • Cai X, Pacheco-Rodriguez G, Fan QY et al. Phenotypic characterization of disseminated cells with TSC2 loss of heterozygosity in patients with lymphangioleiomyomatosis. Am. J. Respir. Crit. Care Med. 182(11), 1410–1418 (2010).
  • Crooks DM, Pacheco-Rodriguez G, DeCastro RM et al. Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 101(50), 17462–17467 (2004).
  • Knudson AG. Hereditary cancer: two hits revisited. J. Cancer Res. Clin. Oncol. 122(3), 135–140 (1996).
  • Bittmann I, Rolf B, Amann G, Lohrs U. Recurrence of lymphangioleiomyomatosis after single lung transplantation, new insights into pathogenesis. Human Pathol. 34, 95–98 (2003).
  • Karbowniczek M, Astrinidis A, Balsara BR et al. Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am. J. Respir. Crit. Care Med. 167(7), 976–982 (2003).
  • Henske EP. Metastasis of benign tumor cells in tuberous sclerosis complex. Genes Chromosomes Cancer 38(4), 376–381 (2003).
  • Avila NA, Dwyer AJ, Rabel A, Moss J. Sporadic lymphangioleiomyomatosis and tuberous sclerosis complex with lymphangioleiomyomatosis: comparison of CT features. Radiology 242(1), 277–285 (2007).
  • Brunelli A, Catalini G, Fianchini A. Pregnancy exacerbating unsuspected mediastinal lymphangioleiomyomatosis and chylothorax. Int. J. Gynaecol. Obstet. 52(3), 289–290 (1996).
  • Yano S. Exacerbation of pulmonary lymphangioleiomyomatosis by exogenous oestrogen used for infertility treatment. Thorax 57(12), 1085–1086 (2002).
  • Logginidou H, Ao X, Russo I, Henske EP. Frequent estrogen and progesterone receptor immunoreactivity in renal angiomyolipomas from women with pulmonary lymphangioleiomyomatosis. Chest 117(1), 25–30 (2000).
  • Howe SR, Gottardis MM, Everitt JI, Walker C. Estrogen stimulation and tamoxifen inhibition of leiomyoma cell growth in vitro and in vivo. Endocrinology 136(11), 4996–5003 (1995).
  • Yu J, Astrinidis A, Howard S, Henske EP. Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am. J. Physiol. Lung Cell Mol. Physiol. 286(4), L694–L700 (2004).
  • Yu JJ, Robb VA, Morrison TA et al. Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc. Natl Acad. Sci. USA 106(8), 2635–2640 (2009).
  • Glassberg MK, Elliot SJ, Fritz J et al. Activation of the estrogen receptor contributes to the progression of pulmonary lymphangioleiomyomatosis via matrix metalloproteinase-induced cell invasiveness. J. Clin. Endocrinol. Metab. 93(5), 1625–1633 (2008).
  • Taveira-DaSilva AM, Stylianou MP, Hedin CJ, Hathaway O, Moss J. Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest 126(6), 1867–1874 (2004).
  • Harari S, Cassandro R, Chiodini I, Chiodini J, Taveira-DaSilva AM, Moss J. Effect of a gonadotrophin-releasing hormone analogue on lung function in lymphangioleiomyomatosis. Chest 133(2), 448–454 (2008).
  • Baldi BG, Medeiros Junior P, Pimenta SP, Lopes RI, Kairalla RA, Carvalho CR. Evolution of pulmonary function after treatment with goserelin in patients with lymphangioleiomyomatosis. J. Bras. Pneumol. 37(3), 375–379 (2011).
  • Riemsma R, Forbes CA, Kessels A et al. Systematic review of aromatase inhibitors in the first-line treatment for hormone sensitive advanced or metastatic breast cancer. Breast Cancer Res. Treat. 123(1), 9–24 (2010).
  • Goncharova EA, Krymskaya VP. Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J. Cell. Biochem. 103(2), 369–382 (2008).
  • Krymskaya VP, Goncharova EA. PI3K/mTORC1 activation in hamartoma syndromes: therapeutic prospects. Cell Cycle 8(3), 403–413 (2009).
  • Lamb RF, Roy C, Diefenbach TJ et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol. 2(5), 281–287 (2000).
  • Rosner M, Hanneder M, Siegel N, Valli A, Hengstschläger M. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat. Res. 658(3), 234–246 (2008).
  • Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21(2), 209–218 (2009).
  • Loewith R, Jacinto E, Wullschleger S et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10(3), 457–468 (2002).
  • Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14(14), 1296–1302 (2004).
  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 278(35), 32493–32496 (2003).
  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13(15), 1259–1268 (2003).
  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5(6), 578–581 (2003).
  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16(12), 1472–1487 (2002).
  • Carrière A, Cargnello M, Julien LA et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18(17), 1269–1277 (2008).
  • Haar EV, Lee S, Bandhakavi S, Griffin TJ, Kim D-H. Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 9, 316–323 (2007).
  • Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol. 28(12), 4104–4115 (2008).
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307(5712), 1098–1101 (2005).
  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 101(37), 13489–13494 (2004).
  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2), 179–193 (2005).
  • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4(9), 648–657 (2002).
  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10(1), 151–162 (2002).
  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377(6548), 441–446 (1995).
  • Sarbassov DD, Ali SM, Sengupta S et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22(2), 159–168 (2006).
  • Zeng Z, Sarbassov dos D, Samudio IJ et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109(8), 3509–3512 (2007).
  • Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 1791(9), 949–955 (2009).
  • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 29(6), 1411–1420 (2009).
  • Kenerson H, Dundon TA, Yeung RS. Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr. Res. 57(1), 67–75 (2005).
  • Bissler JJ, McCormack FX, Young LR et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358(2), 140–151 (2008).
  • Davies DM, Johnson SR, Tattersfield AE et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N. Engl. J. Med. 358(2), 200–203 (2008).
  • Taillé C, Debray MP, Crestani B. Sirolimus treatment for pulmonary lymphangioleiomyomatosis. Ann. Intern. Med. 146(9), 687–688 (2007).
  • Sugimoto R, Nakao A, Yamane M et al. Sirolimus amelioration of clinical symptoms of recurrent lymphangioleiomyomatosis after living-donor lobar lung transplantation. J. Heart Lung Transplant. 27(8), 921–924 (2008).
  • Ohara T, Oto T, Miyoshi K et al. Sirolimus ameliorated post lung transplant chylothorax in lymphangioleiomyomatosis. Ann. Thorac. Surg. 86(6), e7–e8 (2008).
  • Krueger DA, Care MM, Holland K et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363(19), 1801–1811 (2010).
  • McCormack FX, Inoue Y, Moss J et al.; National Institutes of Health Rare Lung Diseases ConsortiumMILES Trial Group;. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N. Engl. J. Med. 364(17), 1595–1606 (2011).
  • Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann. Intern. Med. 154(12), 797–805 (2011).
  • Avila NA, Kelly JA, Chu SC, Dwyer AJ, Moss J. Lymphangioleiomyomatosis: abdominopelvic CT and US findings. Radiology 216(1), 147–153 (2000).
  • Glasgow CG, Taveira-Dasilva AM, Darling TN, Moss J. Lymphatic involvement in lymphangioleiomyomatosis. Ann. NY Acad. Sci. 1131, 206–214 (2008).
  • Seyama K, Kumasaka T, Souma S et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol. 4(3), 143–152 (2006).
  • Young LR, Inoue Y, McCormack FX. Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. N. Engl. J. Med. 358(2), 199–200 (2008).
  • Glasgow CG, Avila NA, Lin JP, Stylianou MP, Moss J. Serum vascular endothelial growth factor-D levels in patients with lymphangioleiomyomatosis reflect lymphatic involvement. Chest 135(5), 1293–1300 (2009).
  • Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4, 51 (2011).
  • Jaiswal VR, Baird J, Fleming J, Miller DS, Sharma S, Molberg K. Localized retroperitoneal lymphangioleiomyomatosis mimicking malignancy. A case report and review of the literature. Arch. Pathol. Lab. Med. 127(7), 879–882 (2003).
  • Llopis I, Arandiga R, Real E et al. Lymphangiomyomatosis mimicking an abdominal lymphoma. Haematologica 87(10), EIM23 (2002).
  • Wong YY, Yeung TK, Chu WC. Atypical presentation of lymphangioleiomyomatosis as acute abdomen: CT diagnosis. AJR. Am. J. Roentgenol. 181(1), 284–285 (2003).
  • Casanova A, María Girón R, Acosta O, Barrón M, Valenzuela C, Ancochea J. Lymphangioleiomyomatosis treatment with sirolimus. Arch. Bronconeumol. 47(9), 470–472 (2011).
  • Piha-Paul SA, Hong DS, Kurzrock R. Response of lymphangioleiomyomatosis to a mammalian target of rapamycin inhibitor (temsirolimus)-based treatment. J. Clin. Oncol. 29(12), e333–e335 (2011).
  • Neurohr C, Hoffmann AL, Huppmann P et al. Is sirolimus a therapeutic option for patients with progressive pulmonary lymphangioleiomyomatosis? Respir. Res. 12, 66 (2011).
  • Carracedo A, Ma L, Teruya-Feldstein J et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118(9), 3065–3074 (2008).
  • Mi R, Ma J, Zhang D, Li L, Zhang H. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model. J. Genet. Genomics 36(6), 355–361 (2009).
  • Makovski V, Haklai R, Kloog Y. Farnesylthiosalicylic acid (salirasib) inhibits Rheb in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. Int. J. Cancer 130(6), 1420–1429 (2012).
  • Matsui K, Takeda K, Yu ZX, Travis WD, Moss J, Ferrans VJ. Role for activation of matrix metalloproteinases in the pathogenesis of pulmonary lymphangioleiomyomatosis. Arch. Pathol. Lab. Med. 124(2), 267–275 (2000).
  • Krymskaya VP, Shipley JM. Lymphangioleiomyomatosis: a complex tale of serum response factor-mediated tissue inhibitor of metalloproteinase-3 regulation. Am. J. Respir. Cell Mol. Biol. 28(5), 546–550 (2003).
  • Ji RC. Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphat. Res. Biol. 4(2), 83–100 (2006).
  • Gilbertson-Beadling S, Powers EA, Stamp-Cole M et al. The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemother. Pharmacol. 36(5), 418–424 (1995).
  • Chang WY, Clements D, Johnson SR. Effect of doxycycline on proliferation, MMP production, and adhesion in LAM-related cells. Am. J. Physiol. Lung Cell Mol. Physiol. 299(3), L393–L400 (2010).
  • Moir LM, Ng HY, Poniris MH et al. Doxycycline inhibits matrix metalloproteinase-2 secretion from TSC2-null mouse embryonic fibroblasts and lymphangioleiomyomatosis cells. Br. J. Pharmacol. 164(1), 83–92 (2011).
  • Moses MA, Harper J, Folkman J. Doxycycline treatment for lymphangioleiomyomatosis with urinary monitoring for MMPs. N. Engl. J. Med. 354(24), 2621–2622 (2006).
  • Pimenta SP, Baldi BG, Acencio MM, Kairalla RA, Carvalho CR. Doxycycline use in patients with lymphangioleiomyomatosis: safety and efficacy in metalloproteinase blockade. J. Bras. Pneumol. 37(4), 424–430 (2011).
  • Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res. 67(20), 9878–9886 (2007).
  • Finlay GA, Malhowski AJ, Polizzi K, Malinowska-Kolodziej I, Kwiatkowski DJ. Renal and liver tumors in Tsc2(+/-) mice, a model of tuberous sclerosis complex, do not respond to treatment with atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Mol. Cancer Ther. 8(7), 1799–1807 (2009).
  • Goncharova EA, Goncharov DA, Li H et al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol. Cell. Biol. 31(12), 2484–2498 (2011).
  • Lee N, Woodrum CL, Nobil AM, Rauktys AE, Messina MP, Dabora SL. Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol. 9, 8 (2009).
  • El-Chemaly S, Taveira-DaSilva A, Stylianou MP, Moss J. Statins in lymphangioleiomyomatosis: a word of caution. Eur. Respir. J. 34(2), 513–514 (2009).
  • El-Hashemite N, Zhang H, Walker V, Hoffmeister KM, Kwiatkowski DJ. Perturbed IFN-gamma-Jak-signal transducers and activators of transcription signaling in tuberous sclerosis mouse models: synergistic effects of rapamycin-IFN-gamma treatment. Cancer Res. 64(10), 3436–3443 (2004).
  • El-Hashemite N, Kwiatkowski DJ. Interferon-gamma-Jak-Stat signaling in pulmonary lymphangioleiomyomatosis and renal angiomyolipoma: a potential therapeutic target. Am. J. Respir. Cell Mol. Biol. 33(3), 227–230 (2005).
  • Goncharova EA, Goncharov DA, Chisolm A et al. Interferon beta augments tuberous sclerosis complex 2 (TSC2)-dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation. Mol. Pharmacol. 73(3), 778–788 (2008).
  • Rosner M, Freilinger A, Hengstschläger M. The tuberous sclerosis genes and regulation of the cyclin-dependent kinase inhibitor p27. Mutat. Res. 613(1), 10–16 (2006).
  • Burgstaller S, Rosner M, Lindengrün C et al. Tuberin, p27 and mTOR in different cells. Amino Acids 36(2), 297–302 (2009).
  • Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9(3), 153–166 (2009).
  • Lacher MD, Pincheira R, Zhu Z et al. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 29(50), 6543–6556 (2010).
  • Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10(9), 1533–1541 (2011).
  • Yu J, Parkhitko AA, Henske EP. Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Proc. Am. Thorac. Soc. 7(1), 48–53 (2010).
  • Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 625(1-3), 220–233 (2009).
  • Carbone M. Feasibility of immunotherapy for lymphangioleiomyomatosis. Am. J. Pathol. 175(6), 2252–2254 (2009).
  • Klarquist J, Barfuss A, Kandala S et al. Melanoma-associated antigen expression in lymphangioleiomyomatosis renders tumor cells susceptible to cytotoxic T cells. Am. J. Pathol. 175(6), 2463–2472 (2009).
  • Dilling DF, Gilbert ER, Picken MM, Eby JM, Love RB, Le Poole IC. A current viewpoint of lymphangioleiomyomatosis supporting immunotherapeutic treatment options. Am. J. Respir. Cell Mol. Biol. 46(1), 1–5 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.