659
Views
71
CrossRef citations to date
0
Altmetric
Review

Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease

, , , &
Pages 275-288 | Published online: 09 Jan 2014

References

  • Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 15, 132–141 (1960).
  • Thurlbeck WM, Angus GE. A distribution curve for chronic bronchitis. Thorax 19, 436–442 (1964).
  • Dunnill MS. The classification and quantification of emphysema. Proc. R. Soc. Med. 62(10), 1024–1027 (1969).
  • Hogg JC, Nepszy SJ, Macklem PT, Thurlbeck WM. Elastic properties of the centrilobular emphysematous space. J. Clin. Invest. 48(7), 1306–1312 (1969).
  • Guillemi S, Wright JL, Hogg JC, Wiggs BR, Macklem PT, Paré PD. Density dependence of pulmonary resistance: correlation with small airway pathology. Eur. Respir. J. 8(5), 789–794 (1995).
  • McDonough JE, Yuan R, Suzuki M et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 365(17), 1567–1575 (2011).
  • Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J. Allergy Clin. Immunol. 112(5), 819–827; quiz 828 (2003).
  • Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 31(6), 1334–1356 (2008).
  • Saetta M, Turato G, Facchini FM et al. Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am. J. Respir. Crit. Care Med. 156(5), 1633–1639 (1997).
  • Baraldo S, Turato G, Badin C et al. Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4), 308–312 (2004).
  • Stanescu D, Sanna A, Veriter C et al. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 51(3), 267–271 (1996).
  • Löfdahl MJ, Roos-Engstrand E, Pourazar J et al. Increased intraepithelial T-cells in stable COPD. Respir. Med. 102(12), 1812–1818 (2008).
  • Hodge G, Reynolds PN, Holmes M, Hodge S. Differential expression of pro-inflammatory cytokines in intra-epithelial T cells between trachea and bronchi distinguishes severity of COPD. Cytokine 60(3), 843–848 (2012).
  • Sohal SS, Reid D, Soltani A et al. Smoking cessation but not inhaled corticosteroids (ICS) can increase histone deacetylase 2 (HDAC2) in COPD (Abstract book). Eur. Respir. J. 36(54), 785S (2010).
  • Sohal SS, Reid D, Soltani A et al. Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease. Respirology 15(6), 930–938 (2010).
  • Sohal SS, Reid D, Soltani A et al. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respir. Res. 12, 130 (2011).
  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 15(6), 1110–1112 (2001).
  • Bafadhel M, McKenna S, Terry S et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 186(1), 48–55 (2012).
  • Fujimoto K, Kubo K, Yamamoto H, Yamaguchi S, Matsuzawa Y. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest 115(3), 697–702 (1999).
  • Chanez P, Vignola AM, O’Shaugnessy T et al. Corticosteroid reversibility in COPD is related to features of asthma. Am. J. Respir. Crit. Care Med. 155(5), 1529–1534 (1997).
  • Pizzichini E, Pizzichini MM, Gibson P et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am. J. Respir. Crit. Care Med. 158(5 Pt 1), 1511–1517 (1998).
  • Reid DW, Wen Y, Johns DP, Williams TJ, Ward C, Walters EH. Bronchodilator reversibility, airway eosinophilia and anti-inflammatory effects of inhaled fluticasone in COPD are not related. Respirology 13(6), 799–809 (2008).
  • Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 8(3), 183–192 (2008).
  • O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am. J. Respir. Crit. Care Med. 155(3), 852–857 (1997).
  • Chrysofakis G, Tzanakis N, Kyriakoy D et al. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 125(1), 71–76 (2004).
  • Saetta M, Di Stefano A, Turato G et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 157(3 Pt 1), 822–826 (1998).
  • Gosman MM, Willemse BW, Jansen DF et al.; Groningen and Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group. Increased number of B-cells in bronchial biopsies in COPD. Eur. Respir. J. 27(1), 60–64 (2006).
  • Hogg JC, Chu F, Utokaparch S et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350(26), 2645–2653 (2004).
  • Richmond I, Booth H, Ward C, Walters EH. Intrasubject variability in airway inflammation in biopsies in mild to moderate stable asthma. Am. J. Respir. Crit. Care Med. 153(3), 899–903 (1996).
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435), 709–721 (2004).
  • Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 4, 435–459 (2009).
  • van der Strate BW, Postma DS, Brandsma CA et al. Cigarette smoke-induced emphysema: a role for the B cell? Am. J. Respir. Crit. Care Med. 173(7), 751–758 (2006).
  • Demedts IK, Bracke KR, Van Pottelberge G et al. Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175(10), 998–1005 (2007).
  • Saetta M, Di Stefano A, Maestrelli P et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am. Rev. Respir. Dis. 147(2), 301–306 (1993).
  • Fraig M, Shreesha U, Savici D, Katzenstein AL. Respiratory bronchiolitis: a clinicopathologic study in current smokers, ex-smokers, and never-smokers. Am. J. Surg. Pathol. 26(5), 647–653 (2002).
  • Finlay GA, O’Driscoll LR, Russell KJ et al. Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am. J. Respir. Crit. Care Med. 156(1), 240–247 (1997).
  • Barnes PJ. Alveolar macrophages as orchestrators of COPD. COPD 1(1), 59–70 (2004).
  • Brinkman GL. The mast cell in normal human bronchus and lung. J. Ultrastruct. Res. 23(1), 115–123 (1968).
  • Lamb D, Lumsden A. Intra-epithelial mast cells in human airway epithelium: evidence for smoking-induced changes in their frequency. Thorax 37(5), 334–342 (1982).
  • Kurmi OP, Lam KB, Ayres JG. Indoor air pollution and the lung in low- and medium-income countries. Eur. Respir. J. 40(1), 239–254 (2012).
  • Marinkovic D, Aleksic-Kovacevic S, Plamenac P. Cellular basis of chronic obstructive pulmonary disease in horses. Int. Rev. Cytol. 257, 213–247 (2007).
  • Soltani A, Ewe YP, Lim ZS et al. Mast cells in COPD airways: relationship to bronchodilator responsiveness and angiogenesis. Eur. Respir. J. 39(6), 1361–1367 (2012).
  • Siddiqui S, Hollins F, Saha S, Brightling CE. Inflammatory cell microlocalisation and airway dysfunction: cause and effect? Eur. Respir. J. 30(6), 1043–1056 (2007).
  • Gosman MM, Postma DS, Vonk JM et al. Association of mast cells with lung function in chronic obstructive pulmonary disease. Respir. Res. 9, 64 (2008).
  • Slats AM, Janssen K, van Schadewijk A et al. Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 176(2), 121–128 (2007).
  • Ballarin A, Bazzan E, Zenteno RH et al. Mast cell infiltration discriminates between histopathological phenotypes of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186(3), 233–239 (2012).
  • Kim WD, Ling SH, Coxson HO et al. The association between small airway obstruction and emphysema phenotypes in COPD. Chest 131(5), 1372–1378 (2007).
  • Andersson CK, Mori M, Bjermer L, Löfdahl CG, Erjefält JS. Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181(3), 206–217 (2010).
  • Ward C, Forrest IA, Murphy DM et al. Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax 60(10), 865–871 (2005).
  • Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12(11), 1035–1044 (2011).
  • Persson C, Uller L. Transepithelial exit of leucocytes: inflicting, reflecting or resolving airway inflammation? Thorax 65(12), 1111–1115 (2010).
  • Gerwin N, Gonzalo JA, Lloyd C et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity 10(1), 9–19 (1999).
  • Corry DB, Kiss A, Song LZ et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 18(9), 995–997 (2004).
  • Jeffery PK. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164(10 Pt 2), S28–S38 (2001).
  • Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am. J. Respir. Crit. Care Med. 174(12), 1327–1334 (2006).
  • Saetta M, Turato G, Baraldo S et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am. J. Respir. Crit. Care Med. 161(3 Pt 1), 1016–1021 (2000).
  • Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129(4), 1068–1087 (2006).
  • Cosio MG, Hale KA, Niewoehner DE. Morphologic and morphometric effects of prolonged cigarette smoking on the small airways. Am. Rev. Respir. Dis. 122(2), 265–221 (1980).
  • Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 5(4), 478–485 (2008).
  • Saha S, Doe C, Mistry V et al. Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax 64(8), 671–676 (2009).
  • Kokturk N, Tatlicioglu T, Memis L, Akyurek N, Akyol G. Expression of transforming growth factor β1 in bronchial biopsies in asthma and COPD. J. Asthma 40(8), 887–893 (2003).
  • Kranenburg AR, de Boer WI, Alagappan VK, Sterk PJ, Sharma HS. Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax 60(2), 106–113 (2005).
  • de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS. Expression of epidermal growth factors and their receptors in the bronchial epithelium of subjects with chronic obstructive pulmonary disease. Am. J. Clin. Pathol. 125(2), 184–192 (2006).
  • Innes AL, Woodruff PG, Ferrando RE et al. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest 130(4), 1102–1108 (2006).
  • Thorley AJ, Tetley TD. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2(4), 409–428 (2007).
  • Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2(4), 347–354; discussion 371 (2005).
  • Baraldo S, Bazzan E, Zanin ME et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest 132(6), 1733–1740 (2007).
  • Kranenburg AR, Willems-Widyastuti A, Moori WJ et al. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am. J. Clin. Pathol. 126(5), 725–735 (2006).
  • Liesker JJ, Ten Hacken NH, Zeinstra-Smith M, Rutgers SR, Postma DS, Timens W. Reticular basement membrane in asthma and COPD: similar thickness, yet different composition. Int. J. Chron. Obstruct. Pulmon. Dis. 4, 127–135 (2009).
  • Postma DS, Timens W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3(5), 434–439 (2006).
  • Bosken CH, Wiggs BR, Paré PD, Hogg JC. Small airway dimensions in smokers with obstruction to airflow. Am. Rev. Respir. Dis. 142(3), 563–570 (1990).
  • Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1(3), 176–183 (2004).
  • Löfdahl M, Kaarteenaho R, Lappi-Blanco E, Tornling G, Sköld MC. Tenascin-C and α-smooth muscle actin positive cells are increased in the large airways in patients with COPD. Respir. Res. 12, 48 (2011).
  • Yao H, Rahman I. Current concepts on the role of inflammation in COPD and lung cancer. Curr. Opin. Pharmacol. 9(4), 375–383 (2009).
  • Yang IA, Relan V, Wright CM et al. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opin. Ther. Targets 15(4), 439–456 (2011).
  • Feltis BN, Wignarajah D, Zheng L et al. Increased vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am. J. Respir. Crit. Care Med. 173(11), 1201–1207 (2006).
  • McDonald DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Respir. Crit. Care Med. 164(10 Pt 2), S39–S45 (2001).
  • Siafakas NM, Antoniou KM, Tzortzaki EG. Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2(4), 453–462 (2007).
  • Liebow AA. Pulmonary emphysema with special reference to vascular changes. Am. Rev. Respir. Dis. 80(1 Pt 2), 67–93 (1959).
  • Calabrese C, Bocchino V, Vatrella A et al. Evidence of angiogenesis in bronchial biopsies of smokers with and without airway obstruction. Respir. Med. 100(8), 1415–1422 (2006).
  • Zanini A, Chetta A, Saetta M et al. Bronchial vascular remodelling in patients with COPD and its relationship with inhaled steroid treatment. Thorax 64(12), 1019–1024 (2009).
  • Reid LM. Pathology of chronic bronchitis. Lancet 266(6806), 274–278 (1954).
  • Glynn AA, Michaels L. Bronchial biopsy in chronic bronchitis and asthma. Istanbul Tip. Fak. Mecmuasi 23, 142–153 (1960).
  • Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J. Clin. Invest. 85(3), 682–689 (1990).
  • Caramori G, Di Gregorio C, Carlstedt I et al. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 45(5), 477–484 (2004).
  • Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol. Rev. 87(3), 1047–1082 (2007).
  • O’Donnell RA, Richter A, Ward J et al. Expression of ErbB receptors and mucins in the airways of long term current smokers. Thorax 59(12), 1032–1040 (2004).
  • Chanez P, Bourdin A, Vachier I, Godard P, Bousquet J, Vignola AM. Effects of inhaled corticosteroids on pathology in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1(3), 184–190 (2004).
  • Telenga ED, Kerstjens HA, Postma DS, Ten Hacken NH, van den Berge M. Inhaled corticosteroids in chronic obstructive pulmonary disease: a review. Expert Opin. Pharmacother. 11(3), 405–421 (2010).
  • Walters JA, Gibson PG, Wood-Baker R, Hannay M, Walters EH. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Coch. Database Syst. Rev. (1), CD001288 (2009).
  • Barnes PJ. Corticosteroid effects on cell signalling. Eur. Respir. J. 27(2), 413–426 (2006).
  • Pauwels RA, Löfdahl CG, Laitinen LA et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 340(25), 1948–1953 (1999).
  • Yang IA, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Coch. Database Syst. Rev. 7, CD002991 (2012).
  • Vestbo J; TORCH Study Group. The TORCH (towards a revolution in COPD health) survival study protocol. Eur. Respir. J. 24(2), 206–210 (2004).
  • Hattotuwa KL, Gizycki MJ, Ansari TW, Jeffery PK, Barnes NC. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebo-controlled biopsy study. Am. J. Respir. Crit. Care Med. 165(12), 1592–1596 (2002).
  • Gizycki MJ, Hattotuwa KL, Barnes N, Jeffery PK. Effects of fluticasone propionate on inflammatory cells in COPD: an ultrastructural examination of endobronchial biopsy tissue. Thorax 57(9), 799–803 (2002).
  • Lapperre TS, Snoeck-Stroband JB, Gosman MM et al.; Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group. Effect of fluticasone with and without salmeterol on pulmonary outcomes in chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. 151(8), 517–527 (2009).
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119(6), 1420–1428 (2009).
  • Soltani A, Reid DW, Sohal SS et al. Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 11, 105 (2010).
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119(6), 1429–1437 (2009).
  • Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119(6), 1417–1419 (2009).
  • Soltani A, Muller HK, Sohal SS et al. Distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) and in asthma: they are not the same disease. Histopathology 60(6), 964–970 (2012).
  • Bettelheim R, Mitchell D, Gusterson BA. Immunocytochemistry in the identification of vascular invasion in breast cancer. J. Clin. Pathol. 37(4), 364–366 (1984).
  • Soltani A, Wood-Baker R, Sohal SS, Muller HK, Reid D, Walters EH. Reticular basement membrane vessels are increased in COPD bronchial mucosa by both Factor VIII and collagen IV immunostaining and are hyperpermeable. J. Allergy (Cairo) 2012, 958383 (2012).
  • Soltani A, Sohal SS, Reid D, Weston S, Wood-Baker R, Walters EH. Vessel-associated transforming growth factor-β1 (TGF-β1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS ONE 7(6), e39736 (2012).
  • Kalluri R, Neilson EG. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112(12), 1776–1784 (2003).
  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer 6(5), 392–401 (2006).
  • Grigoriu BD, Depontieu F, Scherpereel A et al. Endocan expression and relationship with survival in human non-small cell lung cancer. Clin. Cancer Res. 12(15), 4575–4582 (2006).
  • Sarrazin SMC, Delmas D, Lassalle P, Delehedde M. Endocan as a biomarker of endothelial dysfunction in cancer. J. Cancer Sci. Ther. 2(2), 047–052 (2010).
  • Garber K. Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J. Natl Cancer Inst. 100(4), 232–233, 239 (2008).
  • Barnes PJ, Adcock IM. Chronic obstructive pulmonary disease and lung cancer: a lethal association. Am. J. Respir. Crit. Care Med. 184(8), 866–867 (2011).
  • de Torres JP, Marín JM, Casanova C et al. Lung cancer in patients with chronic obstructive pulmonary disease – incidence and predicting factors. Am. J. Respir. Crit. Care Med. 184(8), 913–919 (2011).
  • van Gestel YR, Hoeks SE, Sin DD et al. COPD and cancer mortality: the influence of statins. Thorax 64(11), 963–967 (2009).
  • Young RP, Hopkins R, Eaton TE. Pharmacological actions of statins: potential utility in COPD. Eur. Respir. Rev. 18(114), 222–232 (2009).
  • Parimon T, Chien JW, Bryson CL, McDonell MB, Udris EM, Au DH. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175(7), 712–719 (2007).
  • Kiri VA, Fabbri LM, Davis KJ, Soriano JB. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir. Med. 103(1), 85–90 (2009).
  • Calverley PM, Anderson JA, Celli B et al.; TORCH investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356(8), 775–789 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.