129
Views
14
CrossRef citations to date
0
Altmetric
Vaccine Profile

HSPPC-96 vaccine in metastatic melanoma patients: from the state of the art to a possible future

, , &
Pages 1513-1526 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Balch CM, Buzaid AC, Atkins MB et al. A new American Joint Committee on Cancer staging system for cutaneous melanoma. Cancer88(6), 1484–1491 (2000).
  • Balch CM, Buzaid AC, Soong SJ et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J. Clin. Oncol.19(16), 3635–3648 (2001).
  • Balch CM, Buzaid AC, Soong SJ et al. New TNM melanoma staging system: linking biology and natural history to clinical outcomes. A new American Joint Committee on Cancer staging system for cutaneous melanoma. Cancer21(1), 43–52 (2003).
  • Parmiani G, Castelli C, Santinami M, Rivoltini L. Melanoma immunology: past, present and future. Curr. Opin. Oncol.19(2), 121–127 (2007).
  • Kawakami Y, Wang X, Shofuda T et al. Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J. Immunol.166(4), 2871–2877 (2001).
  • Rivoltini L, Castelli C, Carrabba M et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of mela. J. Immunol.171(7), 3467–3474 (2003).
  • Terando AM, Faries MB, Morton DL. Vaccine therapy for melanoma: current status and future directions. Vaccine25(Suppl. 2), B4–B16 (2007).
  • Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur. J. Cancer40(12), 1825–1836 (2004).
  • Balch CM, Kirkwood J, Reintgen DS. Cutaneous melanoma. In: Cancer: Principles and Practice of Oncology (5th Edition). DeVita VT (Ed.). Lippincott, PA, USA, 1947–1994 (1997).
  • Middleton MR, Grob JJ, Aaronson N et al. Randomized Phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol.18(1), 158–166 (2000).
  • Kaufmann R, Spieth K, Leiter U et al. Temozolomide in combination with interferon-α versus temozolomide alone in patients with advanced metastatic melanoma: a randomized, Phase III, multicenter study from the Dermatologic Cooperative Oncology Group. J. Clin. Oncol.23(35), 9001–9007 (2005).
  • Chang J, Atkinson H, A’Hern R, Lorentzos A, Gore ME. A Phase II study of the sequential administration of dacarbazine and fotemustine in the treatment of cerebral metastases from malignant melanoma. Eur. J. Cancer30A(14), 2093–2095 (1994).
  • Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH. Phase III trial of dacarbazine versus dacarbazine with interferon α-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon α-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J. Clin. Oncol.16(5), 1743–1751 (1998).
  • Khayat D, Avril MF, Gerard B, Bertrand P, Bizzari JP, Cour V. Fotemustine: an overview of its clinical activity in disseminated malignant melanoma. Melanoma Res.2(3), 147–151 (1992).
  • Avril MF, Aamdal S, Grob JJ et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a Phase III study. J. Clin. Oncol.22(6), 1118–1125 (2004).
  • Gogas H, Bafaloukos D, Bedikian AY. The role of taxanes in the treatment of metastatic melanoma. Melanoma Res.14(5), 415–420 (2004).
  • Gehrmann M. Drug evaluation: STA-4783 – enhancing taxane efficacy by induction of Hsp70. Curr. Opin. Investig. Drugs7(6), 574–580 (2006).
  • Al Sarraf M, Fletcher W, Oishi N et al. Cisplatin hydration with and without mannitol diuresis in refractory disseminated malignant melanoma: a southwest oncology group study. Cancer Treat. Rep.66(1), 31–35 (1982).
  • Glover D, Glick JH, Weiler C, Fox K, Guerry D. WR-2721 and high-dose cisplatin: an active combination in the treatment of metastatic melanoma. J. Clin. Oncol.5(4), 574–578 (1987).
  • Atkins MB. The treatment of metastatic melanoma with chemotherapy and biologics. Curr. Opin. Oncol.9(2), 205–213 (1997).
  • Agarwala SS, Ferri W, Gooding W, Kirkwood JM. A Phase III randomized trial of dacarbazine and carboplatin with and without tamoxifen in the treatment of patients with metastatic melanoma. Cancer85(9), 1979–1984 (1999).
  • Bajetta E, Di Leo A, Zampino MG et al. Multicenter randomized trial of dacarbazine alone or in combination with two different doses and schedules of interferon α-2a in the treatment of advanced melanoma. J. Clin. Oncol.12(4), 806–811 (1994).
  • Chapman PB, Einhorn LH, Meyers ML et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J. Clin. Oncol.17(9), 2745–2751 (1999).
  • Keilholz U, Goey SH, Punt CJ et al. Interferon α-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J. Clin. Oncol.15(7), 2579–2588 (1997).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon α-2b. J. Clin. Oncol.17(3), 968–975 (1999).
  • Rusthoven JJ, Quirt IC, Iscoe NA et al. Randomized, double-blind, placebo-controlled trial comparing the response rates of carmustine, dacarbazine, and cisplatin with and without tamoxifen in patients with metastatic melanoma. National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol.14(7), 2083–2090 (1996).
  • Kirkwood JM, Ernstoff MS, Davis CA, Reiss M, Ferraresi R, Rudnick SA. Comparison of intramuscular and intravenous recombinant α-2 interferon in melanoma and other cancers. Ann. Intern. Med.103(1), 32–36 (1985).
  • Kirkwood JM, Ernstoff M. Melanoma: therapeutic options with recombinant interferons. Semin. Oncol.12(4 Suppl. 5), 7–12 (1985).
  • Kirkwood JM, Ibrahim JG, Sondak VK et al. High- and low-dose interferon α-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol.18(12), 2444–2458 (2000).
  • Kirkwood JM, Ibrahim JG, Sosman JA et al. High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB–III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol.19(9), 2370–2380 (2001).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am.6(Suppl. 1), S11–S14 (2000).
  • Dutcher JP, Creekmore S, Weiss GR et al. A Phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J. Clin. Oncol.7(4), 477–485 (1989).
  • Parkinson DR, Abrams JS, Wiernik PH et al. Interleukin-2 therapy in patients with metastatic malignant melanoma: a Phase II study. J. Clin. Oncol.8(10), 1650–1656 (1990).
  • Rosenberg SA, Yang JC, Topalian SL et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA271(12), 907–913 (1994).
  • Legha SS, Ring S, Bedikian A et al. Treatment of metastatic melanoma with combined chemotherapy containing cisplatin, vinblastine and dacarbazine (CVD) and biotherapy using interleukin-2 and interferon-α. Ann. Oncol.7(8), 827–835 (1996).
  • Legha SS. Durable complete responses in metastatic melanoma treated with interleukin-2 in combination with interferon α and chemotherapy. Semin. Oncol.24(1 Suppl. 4), S39–S43 (1997).
  • Legha SS, Ring S, Eton O, Bedikian A, Plager C, Papadopoulos N. Development and results of biochemotherapy in metastatic melanoma: the University of Texas M.D. Anderson Cancer Center experience. Cancer J. Sci. Am.3(Suppl. 1), S9–S15 (1997).
  • Legha SS, Ring S, Eton O et al. Development of a biochemotherapy regimen with concurrent administration of cisplatin, vinblastine, dacarbazine, interferon a, and interleukin-2 for patients with metastatic melanoma. J. Clin. Oncol.16(5), 1752–1759 (1998).
  • Eton O, Legha SS, Bedikian AY et al. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a Phase III randomized trial. J. Clin. Oncol.20(8), 2045–2052 (2002).
  • Atkins MB, Hsu J, Lee S et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon α-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol.26(35), 5748–5754 (2008).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol.23(35), 8968–8977 (2005).
  • Maker AV, Phan GQ, Attia P et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a Phase I/II study. Ann. Surg. Oncol.12(12), 1005–1016 (2005).
  • Sanderson K, Scotland R, Lee P et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol.23(4), 741–750 (2005).
  • Kim CJ, Dessureault S, Gabrilovich D, Reintgen DS, Slingluff CL Jr. Immunotherapy for melanoma. Cancer Control9(1), 22–30 (2002).
  • Hanna MG Jr, Peters LC. Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer42(6), 2613–2625 (1978).
  • Key ME, Brandhorst JS, Hanna MG Jr. Synergistic effects of active specific immunotherapy and chemotherapy in guinea pigs with disseminated cancer. J. Immunol.130(6), 2987–2992 (1983).
  • Peters LC, Brandhorst JS, Hanna MG Jr. Preparation of immunotherapeutic autologous tumor cell vaccines from solid tumors. Cancer Res.39(4), 1353–1360 (1979).
  • Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61(17), 6451–6458 (2001).
  • Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with pep. Nat. Med.4(3), 328–332 (1998).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190(11), 1669–1678 (1999).
  • Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol.17(4), 563–570 (2006).
  • Testori A, Richards J, Whitman E et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100–21 Study Group. J. Clin. Oncol.26(6), 955–962 (2008).
  • Bedikian AY, Del Vecchio M. Allovectin-7 therapy in metastatic melanoma. Expert Opin. Biol. Ther.8(6), 839–844 (2008).
  • Galanis E. Technology evaluation: Allovectin-7, Vical. Curr. Opin. Mol. Ther.4(1), 80–87 (2002).
  • Anichini A, Mortarini R, Nonaka D et al. Association of antigen-processing machinery and HLA antigen phenotype of melanoma cells with survival in American Joint Committee on Cancer stage III and IV melanoma patients. Cancer Res.66(12), 6405–6411 (2006).
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Javia LR, Rosenberg SA. CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J. Immunother.26(1), 85–93 (2003).
  • Viguier M, Lemaitre F, Verola O et al. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol.173(2), 1444–1453 (2004).
  • Valenti R, Huber V, Filipazzi P et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res.66(18), 9290–9298 (2006).
  • Andreola G, Rivoltini L, Castelli C et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med.195(10), 1303–1316 (2002).
  • Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann. Oncol.18(2), 226–232 (2007).
  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8(6), 657–665 (1998).
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol.152(11), 5398–5403 (1994).
  • Lewis JJ. Therapeutic cancer vaccines: using unique antigens. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14653–14656 (2004).
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science269(5230), 1585–1588 (1995).
  • Castelli C, Ciupitu AM, Rini F et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res.61(1), 222–227 (2001).
  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14(3), 303–313 (2001).
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat. Immunol.1(2), 151–155 (2000).
  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem.277(17), 15107–15112 (2002).
  • Asea A, Kraeft SK, Kurt-Jones EA et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med.6(4), 435–442 (2000).
  • Berwin B, Hart JP, Pizzo SV, Nicchitta CV. Cutting edge: CD91-independent cross-presentation of GRP94(gp96)-associated peptides. J. Immunol.168(9), 4282–4286 (2002).
  • Srivastava PK. Immunotherapy for human cancer using heat shock protein–peptide complexes. Curr. Oncol. Rep.7(2), 104–108 (2005).
  • Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol.168(6), 2997–3003 (2002).
  • Lehner T, Bergmeier LA, Wang Y et al. Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur. J. Immunol.30(2), 594–603 (2000).
  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol.12(11), 1539–1546 (2000).
  • Singh-Jasuja H, Scherer HU, Hilf N et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol.30(8), 2211–2215 (2000).
  • Elsner L, Muppala V, Gehrmann M et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J. Immunol.179(8), 5523–5533 (2007).
  • Pilla L, Squarcina P, Coppa J et al. Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res.65(9), 3942–3949 (2005).
  • Binder RJ, Anderson KM, Basu S, Srivastava PK. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J. Immunol.165(11), 6029–6035 (2000).
  • Hoos A, Levey DL. Vaccination with heat shock protein–peptide complexes: from basic science to clinical applications. Expert Rev. Vaccines2(3), 369–379 (2003).
  • Oki Y, Younes A. Heat shock protein-based cancer vaccines. Expert Rev. Vaccines3(4), 403–411 (2004).
  • Gordon NF, Clark BL. The challenges of bringing autologous HSP-based vaccines to commercial reality. Methods32(1), 63–69 (2004).
  • Srivastava PK, Jaikaria NS. Methods of purification of heat shock protein–peptide complexes for use as vaccines against cancers and infectious diseases. Methods Mol. Biol.156, 175–186 (2001).
  • Eton O. Autologous tumor-derived heat-shock-protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. Proc. Am. Assoc. Cancer Res. (AACR) (2000) (Abstract 3463).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20(20), 4169–4180 (2002).
  • Pilla L, Patuzzo R, Rivoltini L et al. A Phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol. Immunother.55(8), 958–968 (2006).
  • Srivastava PK. Immunotherapy of human cancer: lessons from mice. Nat. Immunol.1(5), 363–366 (2000).
  • Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res9(9), 3235–3245 (2003).
  • Li Z, Qiao Y, Laska E et al. Autologous leukocyte-derived heat shock protein 70-peptide complex as a vaccine for chronic myelogenous leukemia in chronic phase: an updated Phase I study. Blood102, 911a (2003).
  • Sosman JA, Unger JM, Liu PY et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J. Clin. Oncol.20(8), 2067–2075 (2002).
  • Atabani SF, Thio CL, Divanovic S et al. Association of CTLA4 polymorphism with regulatory T cell frequency. Eur. J. Immunol.35(7), 2157–2162 (2005).
  • Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic alterations in melanoma. N. Engl. J Med.353(20), 2135–2147 (2005).
  • Wang E, Miller LD, Ohnmacht GA et al. Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res.62(13), 3581–3586 (2002).
  • Bedikian AY, Millward M, Pehamberger H et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol.24(29), 4738–4745 (2006).
  • Schicher N, Paulitschke V, Swoboda A et al. Erlotinib and bevacizumab have synergistic activity against melanoma. Clin. Cancer Res.15(10), 3495–3502 (2009).
  • Parsa A, Crane C, Wilson S et al. Autologous tumor derived gp96 evokes a tumor specific immune response in recurrent glioma patients that correlates with clinical response to therapy. Presented at: AACR-NCI-EORTC International Conference. San Francisco, CA, USA, 22–26 October 2007.
  • Heike M. Pilot trial of vaccination with autologous tumour-derived Gp-96 heat shock protein–peptide complex (HSPPC-96) in patients after surgery for gastric carcinoma. Proc. Am. Soc. Clin. Onc. (ASCO) (2000).
  • Hertkorn C, Lehr A, Woelfel T et al. Phase I trial of vaccination with autologous-tumor derived gp96 (oncophage) in patients after surgery for gastric cancer. Proc. Am. Soc. Clin. Onc. (ASCO) (2002).
  • Jonasch E, Wood C, Tamboli P et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br. J. Cancer98(8), 1336–1341 (2008).
  • Wood CG, Escudier B, Gorelov S. A multicenter randomized study of adjuvant heat shock protein peptide complex 96 (HSPPC-96) vaccine in patients with high risk of recurrence after nephrectomy for renal cell carcinoma (RCC) – a preliminary report. J. Clin. Oncol.22(14 Suppl.) (2004) (Abstract 2618).
  • Wood CG, Srivastava P, Lacombe L et al. Survival update from multicenter, randomized, Phase III trial of vitespen versus observation as adjuvant therapy for renal cell carcinoma in patients at high risk of recurrence. J. Clin. Oncol.27(15 Suppl.) (2009) (Abstract 3009).
  • Maki E, Livingston PO, Lewis JJ et al. A Phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig. Dis. Sci.52(8), 1964–1972 (2007).
  • Dong J, Wei J. Effective vaccines of autologous cancer-derived heat shock protein gp70-complexes in patients with cancer malignancies (pancreatic carcinoma, colo-rectal cancer). Proc. Am. Soc. Clin. Onc. (ASCO) (2005).
  • Li Z, Nash JD, Qiao Y. An autologous tumor-derived heat shock protein vaccine for high European Medicines Agency risk ovarian cancer. Proc. Am. Soc. Clin. Onc. (ASCO) (2005).
  • Younes A, Fayad LE, Pro B. Safety and efficacy of heat shock protein–peptide 96 complex (HSPPC-96) in low grade lymphoma. Proc. Am. Soc. Clin. Onc. (ASCO)22 (2003) (Abstract 2294).
  • Younes A. A Phase II study of heat shock protein–peptide complex-96 vaccine therapy in patients with indolent non-Hodgkin’s lymphoma. Clin. Lymphoma4(3), 183–185 (2003).
  • Oki Y, McLaughlin P, Fayad LE et al. Experience with heat shock protein–peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer109(1), 77–83 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.