418
Views
8
CrossRef citations to date
0
Altmetric
Editorial

Importance of T-cell location rekindled: implication for tuberculosis vaccination strategies

Pages 1465-1468 | Published online: 09 Jan 2014

References

  • McShane H, Hill A. Prime–boost immunisation strategies for tuberculosis. Microbes Infect.7, 962–967 (2005).
  • Xing Z, Charters TJ. Heterologous boost vaccines for bacillus Calmette–Guérin prime immunization against tuberculosis. Expert Rev. Vaccines6(4), 539–546 (2007).
  • Aagaard C, Dietrich J, Doherty M, Andersen P. TB vaccines: current status and future perspectives. Immunol. Cell. Biol.87, 279–286 (2009).
  • Xing Z, Lichty BD. Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis (Edinb.)86, 211–217 (2006).
  • Andersen P. Tuberculosis vaccines – an update. Nat. Rev. Microbiol.5, 484–487 (2007).
  • Ly LH, McMurray DN. Tuberculosis: vaccines in the pipeline. Expert Rev. Vaccines7(5), 635–650 (2008).
  • Chen L, Wang J, Zganiacz A, Xing Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect. Immun.72, 238–246 (2004).
  • Garcia-Contreras L, Wong YL, Muttil P et al. Immunization by a bacterial aerosol. Proc. Natl Acad. Sci. USA105, 4656–4660 (2008).
  • Dietrich J, Andersen C, Rappuoli R et al. Mucosal administration of Ag85B–ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guérin immunity. J. Immunol.177, 6353–6360 (2006).
  • Rosada RS, de la Torre LG, Frantz FG et al. Protection against tuberculosis by a single intranasal administration of DNA–hsp65 vaccine complexed with cationic liposomes. BMC Immunol.9, 38 (2008).
  • Radosevic K, Wieland CW, Rodriguez A et al. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of g interferon. Infect. Immun.75, 4105–4115 (2007).
  • Stukova MA, Sereinig S, Zabolotnyh NV et al. Vaccine potential of influenza vectors expressing Mycobacterium tuberculosis ESAT-6 protein. Tuberculosis (Edinb.)86, 236–246 (2006).
  • Goonetilleke NP, McShane H, Hannan CM et al. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol.171, 1602–1609 (2003).
  • Roediger EK, Kugathasan K, Zhang X, Lichty BD, Xing Z. Heterologous boosting of recombinant adenoviral prime immunization with a novel vesicular stomatitis virus vectored vaccine for pulmonary tuberculosis. Mol. Ther.16, 1161–1169 (2008).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol.173, 6357–6365 (2004).
  • Mu J, Jeyanathan M, Small CL et al. Immunization with a bivalent adenovirus-vectored tuberculosis vaccine provides markedly improved protection over its monovalent counterpart against pulmonary tuberculosis. Mol. Ther.17, 1093–1100 (2009).
  • Forbes EK, Sander C, Ronan EO et al. Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J. Immunol.181, 4955–4964 (2008).
  • Kallenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb.)87, 257–266 (2007).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11, S45–S53 (2005).
  • Kohlmeier JE, Woodland DL. Memory T cell recruitment to the lung airways. Curr. Opin. Immunol.18, 357–362 (2006).
  • Beverley PC, Tchilian EZ. Lessons for tuberculosis vaccines from respiratory virus infection. Expert Rev. Vaccines7(8), 1165–1172 (2008).
  • Cooper AM. T cells in mycobacterial infection and disease. Curr. Opin. Immunol.21, 378–384 (2009).
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Ann. Rev. Immunol.27, 393–422 (2009).
  • Santosuosso M, McCormick S, Roediger E et al. Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization. J. Immunol.178, 2387–2395 (2007).
  • Santosuosso M, Zhang X, McCormick S et al. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174, 7986–7994 (2005).
  • McCormick S, Santosuosso M, Small C-L et al. mucosally delivered dendritic cells activate T cells independently of IL-12 and endogenous antigen presenting cells. J. Immunol.181, 2356–2367 (2008).
  • Jeyanathan M, Mu J, Kugathasan K et al. Airway delivery of soluble mycobacterial antigens restores protective mucosal immunity by single intramuscular plasmid DNA tuberculosis vaccination: role of pro-inflammatory signals in the lung. J. Immunol.181, 5618–5626 (2008).
  • Elvang T, Christensen JP, Billeskov R et al. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination. PLoS ONE4, e5139 (2009).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun.74, 4634–4643 (2006).
  • Mittrücker HW, Steinhoff U, Köhler A et al. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl Acad. Sci. USA104, 12434–12439 (2007).
  • Xing Z, McFarland CT, Sallenave JM et al. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS ONE4, e5856 (2009).
  • Vordermeier HM, Villarreal-Ramos B, Cockle PJ et al. Heterologous prime–boost vaccination strategies based on BCG and viral booster vaccines improved BCG induced protection in cattle against bovine tuberculosis. Infect. Immun.77, 3364–3373 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.