295
Views
63
CrossRef citations to date
0
Altmetric
Review

Use of hepadnavirus core proteins as vaccine platforms

, &
Pages 1565-1573 | Published online: 09 Jan 2014

References

  • Peters B, Sidney J, Bourne P et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol.3(3), e91 (2005).
  • Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods40(1), 60–65 (2006).
  • Clarke BE, Newton SE, Carroll AR et al. Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature330(6146), 381–384 (1987).
  • Howard CR. The biology of hepadnaviruses. J. Gen. Virol.67(Pt 7), 1215–1235 (1986).
  • Seeger C, Mason WS. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev.64(1), 51–68 (2000).
  • Hoofnagle JH, Gerety RJ, Barker LF. Antibody to hepatitis-B-virus core in man. Lancet2(7834), 869–873 (1973).
  • Milich DR, McLachlan A, Thornton GB, Hughes JL. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature329(6139), 547–549 (1987).
  • Bottcher B, Wynne SA, Crowther RA. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature386(6620), 88–91 (1997).
  • Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ, Steven AC. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature386(6620), 91–94 (1997).
  • Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Mol. Cell3(6), 771–780 (1999).
  • Salfeld J, Pfaff E, Noah M, Schaller H. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J. Virol.63(2), 798–808 (1989).
  • Schodel F, Moriarty AM, Peterson DL et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol.66(1), 106–114 (1992).
  • Birnbaum F, Nassal M. Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J. Virol.64(7), 3319–3330 (1990).
  • Watts NR, Conway JF, Cheng N et al. The morphogenic linker peptide of HBV capsid protein forms a mobile array on the interior surface. EMBO J.21(5), 876–884 (2002).
  • Billaud JN, Peterson D, Lee BO et al. Advantages to the use of rodent hepadnavirus core proteins as vaccine platforms. Vaccine25(9), 1593–1606 (2007).
  • Billaud JN, Peterson D, Schodel F et al. Comparative antigenicity and immunogenicity of hepadnavirus core proteins. J. Virol.79(21), 13641–13655 (2005).
  • Paoletti LC, Peterson DL, Legmann R, Collier RJ. Preclinical evaluation of group B streptococcal polysaccharide conjugate vaccines prepared with a modified diphtheria toxin and a recombinant duck hepatitis B core antigen. Vaccine20(3–4), 370–376 (2001).
  • Billaud JN, Peterson D, Barr M et al. Combinatorial approach to hepadnavirus-like particle vaccine design. J. Virol.79(21), 13656–13666 (2005).
  • Walker A, Skamel C, Vorreiter J, Nassal M. Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J. Biol. Chem.283(48), 33508–33515 (2008).
  • Ou JH, Laub O, Rutter WJ. Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proc. Natl Acad. Sci. USA83(6), 1578–1582 (1986).
  • Ziermann R, Ganem D. Homologous and heterologous complementation of HBV and WHV capsid and polymerase functions in RNA encapsidation. Virology219(2), 350–356 (1996).
  • Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine24(14), 2506–2513 (2006).
  • Milich DR, McLachlan A, Stahl S et al. Comparative immunogenicity of hepatitis B virus core and E antigens. J. Immunol.141(10), 3617–3624 (1988).
  • Zheng J, Schodel F, Peterson DL. The structure of hepadnaviral core antigens. Identification of free thiols and determination of the disulfide bonding pattern. J. Biol. Chem.267(13), 9422–9429 (1992).
  • Jegerlehner A, Tissot A, Lechner F et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine20(25–26), 3104–3112 (2002).
  • Jegerlehner A, Storni T, Lipowsky G, Schmid M, Pumpens P, Bachmann MF. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur J. Immunol.32(11), 3305–3314 (2002).
  • Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol.172(9), 5598–5605 (2004).
  • Fu TM, Grimm KM, Citron MP et al. Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine27(9), 1440–1447 (2009).
  • Beesley KM, Francis MJ, Clarke BE et al. Expression in yeast of amino-terminal peptide fusions to hepatitis B core antigen and their immunological properties. Biotechnology (NY)8(7), 644–649 (1990).
  • Borisova GP, Berzins I, Pushko PM et al. Recombinant core particles of hepatitis B virus exposing foreign antigenic determinants on their surface. FEBS Lett.259(1), 121–124 (1989).
  • Brown AL, Francis MJ, Hastings GZ et al. Foreign epitopes in immunodominant regions of hepatitis B core particles are highly immunogenic and conformationally restricted. Vaccine9(8), 595–601 (1991).
  • Clarke BE, Brown AL, Grace KG et al. Presentation and immunogenicity of viral epitopes on the surface of hybrid hepatitis B virus core particles produced in bacteria. J. Gen. Virol.71(Pt 5), 1109–1117 (1990).
  • Francis MJ, Hastings GZ, Brown AL et al. Immunological properties of hepatitis B core antigen fusion proteins. Proc. Natl Acad. Sci. USA87(7), 2545–2549 (1990).
  • Moriarty A, McGee JS, Winslow B et al. Expression of HIV gag and env B-cell epitopes on the surface of HBV core particles and analysis of the immune responses generated to those epitopes. In: Vaccines 90: Modern Approaches to New Vaccines Including Prevention of AIDS. Cold Spring Harbor Press, NY, USA, 225 (1990).
  • Schodel F, Milich DR, Will H. Hepatitis B virus nucleocapsid/pre-S2 fusion proteins expressed in attenuated Salmonella for oral vaccination. J. Immunol.145(12), 4317–4321 (1990).
  • Stahl SJ, Murray K. Immunogenicity of peptide fusions to hepatitis B virus core antigen. Proc. Natl Acad. Sci. USA86(16), 6283–6287 (1989).
  • von Brunn A, Brand M, Reichhuber C, Morys-Wortmann C, Deinhardt F, Schodel F. Principal neutralizing domain of HIV-1 is highly immunogenic when expressed on the surface of hepatitis B core particles. Vaccine11(8), 817–824 (1993).
  • Karpenko LI, Ivanisenko VA, Pika IA et al. Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids18(4), 329–337 (2000).
  • Kratz PA, Bottcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl Acad. Sci. USA96(5), 1915–1920 (1999).
  • Skamel C, Ploss M, Bottcher B et al. Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses against Borrelia burgdorferi infection. J. Biol. Chem.281(25), 17474–17481 (2006).
  • Nassal M, Skamel C, Kratz PA, Wallich R, Stehle T, Simon MM. A fusion product of the complete Borrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur J. Immunol.35(2), 655–665 (2005).
  • Hoofnagle JH, Dusheiko GM, Seeff LB, Jones EA, Waggoner JG, Bales ZB. Seroconversion from hepatitis B e antigen to antibody in chronic type B hepatitis. Ann. Intern. Med.94(6), 744–748 (1981).
  • Maruyama T, McLachlan A, Iino S, Koike K, Kurokawa K, Milich DR. The serology of chronic hepatitis B infection revisited. J. Clin. Invest.91(6), 2586–2595 (1993).
  • Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol.13, 29–60 (1995).
  • Milich DR, McLachlan A, Moriarty A, Thornton GB. Immune response to hepatitis B virus core antigen (HBcAg): localization of T cell recognition sites within HBcAg/HBeAg. J. Immunol.139(4), 1223–1231 (1987).
  • Milich DR, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science234(4782), 1398–1401 (1986).
  • Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science262(5138), 1448–1451 (1993).
  • Milich DR, Chen M, Schodel F, Peterson DL, Jones JE, Hughes JL. Role of B cells in antigen presentation of the hepatitis B core. Proc. Natl Acad. Sci. USA94(26), 14648–14653 (1997).
  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl Acad. Sci. USA95(16), 9477–9481 (1998).
  • Cooper A, Tal G, Lider O, Shaul Y. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J. Immunol.175(5), 3165–3176 (2005).
  • Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G. The arginine-rich carboxy-terminal domain of the hepatitis B virus core protein mediates attachment of nucleocapsids to cell-surface-expressed heparan sulfate. J. Gen. Virol.86(Pt 1), 75–84 (2005).
  • Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G. Contamination of a recombinant hepatitis B virus nucleocapsid preparation with a human B-cell activator. J. Virol.81(5), 2535–2536 (2007).
  • Vanlandschoot P, Van Houtte F, Ulrichts P, Tavernier J, Leroux-Roels G. Immunostimulatory potential of hepatitis B nucleocapsid preparations: lipopolysaccharide contamination should not be overlooked. J. Gen. Virol.86(Pt 2), 323–331 (2005).
  • Lee BO, Tucker A, Frelin L et al. Interaction of the hepatitis B core antigen and the innate immune system. J. Immunol.182(11), 6670–6681 (2009).
  • Chaturvedi A, Dorward D, Pierce SK. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity28(6), 799–809 (2008).
  • Schodel F, Wirtz R, Peterson D et al. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. J. Exp. Med.180(3), 1037–1046 (1994).
  • Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology44(2–3), 98–114 (2001).
  • Herrington DA, Clyde DF, Losonsky G et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature328(6127), 257–259 (1987).
  • Zavala F, Tam JP, Hollingdale MR et al. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science228(4706), 1436–1440 (1985).
  • Yoshida N, Nussenzweig RS, Potocnjak P, Nussenzweig V, Aikawa M. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science207(4426), 71–73 (1980).
  • Zavala F, Tam JP, Barr PJ et al. Synthetic peptide vaccine confers protection against murine malaria. J. Exp. Med.166(5), 1591–1596 (1987).
  • Schodel F, Peterson D, Milich DR, Charoenvit Y, Sadoff J, Wirtz R. Immunization with hybrid hepatitis B virus core particles carrying circumsporozoite antigen epitopes protects mice against Plasmodium yoelii challenge. Behring Inst. Mitt. (98), 114–119 (1997).
  • Milich DR, Hughes J, Jones J, Sallberg M, Phillips TR. Conversion of poorly immunogenic malaria repeat sequences into a highly immunogenic vaccine candidate. Vaccine20(5–6), 771–788 (2001).
  • Birkett A, Lyons K, Schmidt A et al. A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect. Immun.70(12), 6860–6870 (2002).
  • Langermans JA, Schmidt A, Vervenne RA et al. Effect of adjuvant on reactogenicity and long-term immunogenicity of the malaria vaccine ICC-1132 in macaques. Vaccine23(41), 4935–4943 (2005).
  • Gregson AL, Oliveira G, Othoro C et al. Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of Plasmodium falciparum circumsporozoite protein. PLoS One3(2), e1556 (2008).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun.72(11), 6519–6527 (2004).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Walther M, Dunachie S, Keating S et al. Safety, immunogenicity and efficacy of a pre-erythrocytic malaria candidate vaccine, ICC-1132 formulated in Seppic ISA 720. Vaccine23(7), 857–864 (2005).
  • Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J. Virol.65(10), 5491–5498 (1991).
  • Zebedee SL, Lamb RA. Nucleotide sequences of influenza A virus RNA segment 7: a comparison of five isolates. Nucleic Acids Res.17(7), 2870 (1989).
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10), 1157–1163 (1999).
  • De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology337(1), 149–161 (2005).
  • Jennings GT, Bachmann MF. Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. Annu. Rev. Pharmacol. Toxicol.49, 303–326 (2009).
  • Ionescu RM, Przysiecki CT, Liang X et al. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J. Pharm. Sci.95(1), 70–79 (2006).
  • Murata Y, Lightfoote PM, Rose RC, Walsh EE. Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres. Virol. J.6, 81 (2009).
  • Kumar S, Ochoa W, Singh P et al. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology388(1), 185–190 (2009).
  • Denis J, Acosta-Ramirez E, Zhao Y et al. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine26(27–28), 3395–3403 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.