253
Views
32
CrossRef citations to date
0
Altmetric
Special Focus Issue: Influenza Vaccines - Review

Baculovirus vector as a delivery vehicle for influenza vaccines

, &
Pages 455-467 | Published online: 09 Jan 2014

References

  • Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathog.4(5), e1000072 (2008).
  • El Sahly HM, Keitel WA. Pandemic H5N1 influenza vaccine development: an update. Expert Rev. Vaccines7(2), 241–247 (2008).
  • Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev.20(2), 243–267 (2007).
  • Subbarao K, Luke C. H5N1 viruses and vaccines. PLoS Pathog.3(3), E40 (2007).
  • Cinatl J Jr, Michaelis M, Doerr HW. The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med. Microbiol. Immunol.196(4), 213–225 (2007).
  • van den Berg T, Lambrecht B, Marche S et al. Influenza vaccines and vaccination strategies in birds. Comp. Immunol. Microbiol. Infect. Dis.31(2–3), 121–165 (2008).
  • Tosh PK, Poland GA. Emerging vaccines for influenza. Expert Opin. Emerg. Drugs13(1), 21–40 (2008).
  • Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y. Human infection with highly pathogenic H5N1 influenza virus. Lancet371(9622), 1464–1475 (2008).
  • Li Z, Yi Y, Yin X, Zhang Z, Liu J. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS ONE3(5), E2273 (2008).
  • Mirzaei M, Jardin B, Elias CB, Prakash S. Expression and production of human interleukin-7 in insect cells using baculovirus expression vector system (BEVS). Appl. Biochem. Biotechnol.151(1), 93–103 (2008).
  • Sadigh ZA, Shahrabadi MS, Shafyi A, Bambai B. Expression of biologically active measles virus hemagglutinin glycoprotein by a recombinant baculovirus. Pak. J. Biol. Sci.11(9), 1220–1226 (2008).
  • Cribb RC, Haddadin FT, Lee JS, Webb K. Baculovirus expression and bioactivity of a soluble 140 kDa extracellular cleavage fragment of L1 neural cell adhesion molecule. Protein Expr. Purif.57(2), 172–179 (2008).
  • Hao Z, Li X, Qiao T, Fan D. Successful expression and purification of human CIAPIN1 in baculovirus-insect cell system and application of this system to investigation of its potential methyltransferase activity. Int. J. Biol. Macromol.42(1), 27–32 (2008).
  • Nwe N, He Q, Damrongwatanapokin S et al. Expression of hemagglutinin protein from the avian influenza virus H5N1 in a baculovirus/insect cell system significantly enhanced by suspension culture. BMC Microbiol.6, 16 (2006).
  • Wang K, Holtz KM, Anderson K, Chubet R, Mahmoud W, Cox MM. Expression and purification of an influenza hemagglutinin – one step closer to a recombinant protein-based influenza vaccine. Vaccine24(12), 2176–2185 (2006).
  • Smith GE, Summers MD, Fraser MJ. Production of human β interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol.3(12), 2156–2165 (1983).
  • Ojala K, Koski J, Ernst W, Grabherr R, Jones I, Oker-Blom C. Improved display of synthetic IgG-binding domains on the baculovirus surface. Technol. Cancer Res. Treat.3(1), 77–84 (2004).
  • Riikonen R, Matilainen H, Rajala N et al. Functional display of an α2 integrin-specific motif (RKK) on the surface of baculovirus particles. Technol. Cancer Res. Treat.4(4), 437–445 (2005).
  • Bonnet S, Petres S, Holm I et al. Soluble and glyco-lipid modified baculovirus Plasmodium falciparum C-terminal merozoite surface protein 1, two forms of a leading malaria vaccine candidate. Vaccine24(33–34), 5997–6008 (2006).
  • Ge J, Huang Y, Hu X, Zhong J. A surface-modified baculovirus vector with improved gene delivery to B-lymphocytic cells. J. Biotechnol.129(3), 367–372 (2007).
  • Matilainen H, Makela AR, Riikonen R et al. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J. Biotechnol.125(1), 114–126 (2006).
  • Peralta A, Molinari P, Conte-Grand D, Calamante G, Taboga O. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties. Appl. Microbiol. Biotechnol.75(2), 407–414 (2007).
  • Condreay JP, Kost TA. Baculovirus expression vectors for insect and mammalian cells. Curr. Drug Targets8(10), 1126–1131 (2007).
  • Fornwald JA, Lu Q, Wang D, Ames RS. Gene expression in mammalian cells using BacMam, a modified baculovirus system. Methods Mol. Biol.388, 95–114 (2007).
  • Liu ZS, Zhang C, Lu XL et al. [Transduction of various mammalian bone marrow-derived mesenchymal stem cells by baculovirus]. Sheng Li Xue Bao, 60(3), 431–436 (2008).
  • Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin.26(4), 405–416 (2005).
  • Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol.23(5), 567–575 (2005).
  • Liang CY, Wang HZ, Li TX, Hu ZH, Chen XW. High efficiency gene transfer into mammalian kidney cells using baculovirus vectors. Arch. Virol.149(1), 51–60 (2004).
  • Merrihew RV, Kost TA, Condreay JP. Baculovirus-mediated gene delivery into mammalian cells. Methods Mol. Biol.246, 355–365 (2004).
  • Kaikkonen MU, Raty JK, Airenne KJ, Wirth T, Heikura T, Yla-Herttuala S. Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther.13(4), 304–312 (2006).
  • Luz-Madrigal A, Clapp C, Aranda J, Vaca L. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter. Virol. J.4, 88 (2007).
  • Pieroni L, Maione D, La Monica N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther.12(8), 871–881 (2001).
  • Sarkis C, Serguera C, Petres S et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl Acad. Sci. USA97(26), 14638–14643 (2000).
  • Kost TA, Condreay JP. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol.20(4), 173–180 (2002).
  • Bresson JL, Perronne C, Launay O et al. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: Phase I randomised trial. Lancet367(9523), 1657–1664 (2006).
  • Hehme N, Engelmann H, Kunzel W, Neumeier E, Sanger R. Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med. Microbiol. Immunol.191(3–4), 203–208 (2002).
  • Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolff M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N. Engl. J. Med.354(13), 1343–1351 (2006).
  • Kim JK, Seiler P, Forrest HL et al. Pathogenicity and vaccine efficacy of different clades of Asian H5N1 avian influenza A viruses in domestic ducks. J. Virol.82(22), 11374–11382 (2008).
  • Murakami S, Iwasa A, Iwatsuki-Horimoto K et al. Cross-clade protective immunity of H5N1 influenza vaccines in a mouse model. Vaccine26(50), 6398–6404 (2008).
  • Nicholson KG, Colegate AE, Podda A et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet357(9272), 1937–1943 (2001).
  • Keitel WA, Campbell JD, Treanor JJ et al. Safety and immunogenicity of an inactivated influenza A/H5N1 vaccine given with or without aluminum hydroxide to healthy adults: results of a Phase I–II randomized clinical trial. J. Infect. Dis.198(9), 1309–1316 (2008).
  • Nolan T, Richmond PC, Formica NT et al. Safety and immunogenicity of a prototype adjuvanted inactivated split-virus influenza A (H5N1) vaccine in infants and children. Vaccine26(50), 6383–6391 (2008).
  • Carter NJ, Plosker GL. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus. BioDrugs22(5), 279–292 (2008).
  • Nolan TM, Richmond PC, Skeljo MV et al. Phase I and II randomised trials of the safety and immunogenicity of a prototype adjuvanted inactivated split-virus influenza A (H5N1) vaccine in healthy adults. Vaccine26(33), 4160–4167 (2008).
  • Leroux-Roels I, Bernhard R, Gerard P, Drame M, Hanon E, Leroux-Roels G. Broad Clade 2 cross-reactive immunity induced by an adjuvanted clade 1 rH5N1 pandemic influenza vaccine. PLoS ONE3(2), E1665 (2008).
  • Stech J, Garn H, Wegmann M, Wagner R, Klenk HD. A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat. Med.11(6), 683–689 (2005).
  • Shi H, Liu XF, Zhang X, Chen S, Sun L, Lu J. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses. Vaccine25(42), 7379–7384 (2007).
  • Joseph T, McAuliffe J, Lu B et al. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets. Virology378(1), 123–132 (2008).
  • Chen H, Matsuoka Y, Swayne D et al. Generation and characterization of a cold-adapted influenza A H9N2 reassortant as a live pandemic influenza virus vaccine candidate. Vaccine21(27–30), 4430–4436 (2003).
  • Suguitan AL Jr, McAuliffe J, Mills KL et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med.3(9), E360 (2006).
  • Ghendon YZ, Markushin SG, Akopova, II et al. Development of cell culture (MDCK) live cold-adapted (CA) attenuated influenza vaccine. Vaccine23(38), 4678–4684 (2005).
  • Romanova J, Katinger D, Ferko B et al. Live cold-adapted influenza A vaccine produced in Vero cell line. Virus Res.103(1–2), 187–193 (2004).
  • Song L, Nakaar V, Kavita U et al. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS ONE3(5), E2257 (2008).
  • Cox MM. Progress on baculovirus-derived influenza vaccines. Curr. Opin. Mol. Ther.10(1), 56–61 (2008).
  • Powers DC, Smith GE, Anderson EL et al. Influenza A virus vaccines containing purified recombinant H3 hemagglutinin are well-tolerated and induce protective immune responses in healthy adults. J. Infect. Dis.171(6), 1595–1599 (1995).
  • Powers DC, McElhaney JE, Florendo OA Jr et al. Humoral and cellular immune responses following vaccination with purified recombinant hemagglutinin from influenza A (H3N2) virus. J. Infect. Dis.175(2), 342–351 (1997).
  • Rimmelzwaan GF, Claas EC, van Amerongen G, de Jong JC, Osterhaus AD. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine17(11–12), 1355–1358 (1999).
  • Treanor JJ, Wilkinson BE, Masseoud F et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine19(13–14), 1732–1737 (2001).
  • Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine25(39–40), 6852–6862 (2007).
  • Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis.12(4), 569–574 (2006).
  • Johansson BE, Brett IC. Changing perspective on immunization against influenza. Vaccine25(16), 3062–3065 (2007).
  • Bright RA, Ross TM, Subbarao K, Robinson HL, Katz JM. Impact of glycosylation on the immunogenicity of a DNA-based influenza H5 HA vaccine. Virology308(2), 270–278 (2003).
  • Epstein SL, Tumpey TM, Misplon JA et al. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg. Infect. Dis.8(8), 796–801 (2002).
  • Kodihalli S, Kobasa DL, Webster RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine18(23), 2592–2599 (2000).
  • Chen MW, Cheng TJ, Huang Y et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl Acad. Sci. USA105(36), 13538–13543 (2008).
  • Hoelscher MA, Garg S, Bangari DS et al. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet367(9509), 475–481 (2006).
  • Matsuura Y. [Gene transfer into mammalian cells by baculovirus vector and its applications]. Uirusu47(2), 247–256 (1997).
  • Shoji I, Aizaki H, Tani H et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol.78(Pt 10), 2657–2664 (1997).
  • Zhu Y, Qi Y, Liu Z, Xiao G. Baculovirus-mediated gene transfer into mammalian cells. Sci. China C Life Sci.41(5), 473–478 (1998).
  • Cheng T, Xu CY, Wang YB et al. [Rapid and efficient expression of foreign genes in mammalian cells by baculovirus vectors]. Sheng Wu Gong Cheng Xue Bao19(5), 581–586 (2003).
  • Cheng T, Xu CY, Wang YB et al. A rapid and efficient method to express target genes in mammalian cells by baculovirus. World J. Gastroenterol.10(11), 1612–1618 (2004).
  • Huser A, Hofmann C. Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am. J. Pharmacogenomics3(1), 53–63 (2003).
  • van Loo ND, Fortunati E, Ehlert E, Rabelink M, Grosveld F, Scholte BJ. Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J. Virol.75(2), 961–970 (2001).
  • Jardin BA, Zhao Y, Selvaraj M et al. Expression of SEAP (secreted alkaline phosphatase) by baculovirus mediated transduction of HEK 293 cells in a hollow fiber bioreactor system. J. Biotechnol.135(3), 272–280 (2008).
  • Fonfria E, Clay WC, Levy DS et al. Cloning and pharmacological characterization of the guinea pig P2X7 receptor orthologue. Br. J. Pharmacol.153(3), 544–556 (2008).
  • Safdar A, Cox MM. Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use. Expert. Opin. Invest. Drugs16(7), 927–934 (2007).
  • Crawford J, Wilkinson B, Vosnesensky A et al. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine17(18), 2265–2274 (1999).
  • Swayne DE, Perdue ML, Beck JR, Garcia M, Suarez DL. Vaccines protect chickens against H5 highly pathogenic avian influenza in the face of genetic changes in field viruses over multiple years. Vet. Microbiol.74(1–2), 165–172 (2000).
  • Lakey DL, Treanor JJ, Betts RF et al. Recombinant baculovirus influenza A hemagglutinin vaccines are well tolerated and immunogenic in healthy adults. J. Infect. Dis.174(4), 838–841 (1996).
  • Treanor JJ, Schiff GM, Couch RB et al. Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. J. Infect. Dis.193(9), 1223–1228 (2006).
  • Johansson BE. Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine17(15–16), 2073–2080 (1999).
  • Latham T, Galarza JM. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol.75(13), 6154–6165 (2001).
  • Bright RA, Carter DM, Daniluk S et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine25(19), 3871–3878 (2007).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE3(1), E1501 (2008).
  • Ernst WJ, Spenger A, Toellner L, Katinger H, Grabherr RM. Expanding baculovirus surface display. Modification of the native coat protein gp64 of Autographa californica NPV. Eur. J. Biochem.267(13), 4033–4039 (2000).
  • Borg J, Nevsten P, Wallenberg R et al. Amino-terminal anchored surface display in insect cells and budded baculovirus using the amino-terminal end of neuraminidase. J. Biotechnol.114(1–2), 21–30 (2004).
  • Lu L, Yu L, Kwang J. Baculovirus surface-displayed hemagglutinin of H5N1 influenza virus sustains its authentic cleavage, hemagglutination activity, and antigenicity. Biochem. Biophys. Res. Commun.358(2), 404–409 (2007).
  • Yang DG, Chung YC, Lai YK, Lai CW, Liu HJ, Hu YC. Avian influenza virus hemagglutinin display on baculovirus envelope: cytoplasmic domain affects virus properties and vaccine potential. Mol. Ther.15(5), 989–996 (2007).
  • Zhou J, Blissard GW. Display of heterologous proteins on gp64null baculovirus virions and enhanced budding mediated by a vesicular stomatitis virus G-stem construct. J. Virol.82(3), 1368–1377 (2008).
  • Prabakaran M, Velumani S, He F et al. Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant. Virology380(2), 412–420 (2008).
  • He F, Ho Y, Yu L, Kwang J. WSSV ie1 promoter is more efficient than CMV promoter for H5 Hemagglutinin expression in baculovirus as a chicken vaccine. BMC Microbiol.8(1), 238 (2008).
  • Pfeifer TA, Hegedus DD, Grigliatti TA, Theilmann DA. Baculovirus immediate-early promoter-mediated expression of the Zeocin resistance gene for use as a dominant selec-based marker in dipteran and lepidopteran insect cell lines. Gene188(2), 183–190 (1997).
  • Morris TD, Miller LK. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J. Virol.66(12), 7397–7405 (1992).
  • Crawford AM, Miller LK. Characterization of an early gene accelerating expression of late genes of the baculovirus Autographa californica nuclear polyhedrosis virus. J. Virol.62(8), 2773–2781 (1988).
  • Liu WJ, Chang YS, Wang CH, Kou GH, Lo CF. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology334(2), 327–341 (2005).
  • Gao H, Wang Y, Li N et al. Efficient gene delivery into mammalian cells mediated by a recombinant baculovirus containing a whispovirus ie1 promoter, a novel shuttle promoter between insect cells and mammalian cells. J. Biotechnol.131(2), 138–143 (2007).
  • Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res.29(2), 155–165 (1993).
  • Tochikubo K, Isaka M, Yasuda Y et al. Recombinant cholera toxin B subunit acts as an adjuvant for the mucosal and systemic responses of mice to mucosally co-administered bovine serum albumin. Vaccine16(2–3), 150–155 (1998).
  • Wu HY, Nguyen HH, Russell MW. Nasal lymphoid tissue (NALT) as a mucosal immune inductive site. Scand. J. Immunol.46(5), 506–513 (1997).
  • Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol.171(3), 1133–1139 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.