785
Views
83
CrossRef citations to date
0
Altmetric
Special Focus Issues: DNA Vaccines - Review

DNA vaccines in veterinary use

&
Pages 1251-1276 | Published online: 09 Jan 2014

References

  • Krishnan BR. Current status of DNA vaccines in veterinary medicine. Adv. Drug Deliv. Rev.43(1), 3–11 (2000).
  • Babiuk LA, van Drunen Littel-van den Hurk, Babiuk SL. Immunization of animals: from DNA to the dinner plate. Vet. Immunol. Immunopathol.72(1–2), 189–202 (1999).
  • Dhama K, Mahendran M, Gupta PK, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Vet. Res. Commun.32(5), 341–356 (2008).
  • Kurath G. Biotechnology and DNA vaccines for aquatic animals. Rev. Sci. Tech.27(1), 175–196 (2008).
  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin. Microbiol. Rev.20(3), 489–510 (2007).
  • AVMA. U.S. Pet Ownership & Demographics Sourcebook (2007 Edition). American Veterinary Medical Association, IL, USA (2007).
  • Kusuhara H, Hohdatsu T, Okumura M et al. Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats. Vet. Microbiol.108(3–4), 155–165 (2005).
  • Uhl EW, Heaton-Jones TG, Pu R, Yamamoto JK. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet. Immunol. Immunopathol.90(3–4), 113–132 (2002).
  • Levy JK, Scott HM, Lachtara JL, Crawford PC. Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in North America and risk factors for seropositivity. J. Am. Vet. Med. Assoc.228(3), 371–376 (2006).
  • Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp. Immunol. Microbiol. Infect. Dis.31(2–3), 167–190 (2008).
  • Dunham SP, Graham E. Retroviral infections of small animals. Vet. Clin. North Am. Small Anim. Pract.38(4), 879–901, ix (2008).
  • Fromont E, Artois M, Langlais M, Courchamp F, Pontier D. Modelling the feline leukemia virus (FeLV) in natural populations of cats (Felis catus). Theor. Popul. Biol.52(1), 60–70 (1997).
  • Sparkes AH. Feline leukaemia virus and vaccination. J. Feline Med. Surg.5(2), 97–100 (2003).
  • Lubkin SR, Romatowski J, Zhu M, Kulesa PM, White KA. Evaluation of feline leukemia virus control measures. J. Theor. Biol.178(1), 53–60 (1996).
  • Flynn JN, Hanlon L, Jarrett O. Feline leukaemia virus: protective immunity is mediated by virus-specific cytotoxic T lymphocytes. Immunology101(1), 120–125 (2000).
  • Hofmann-Lehmann R, Tandon R, Boretti FS et al. Reassessment of feline leukaemia virus (FeLV) vaccines with novel sensitive molecular assays. Vaccine24(8), 1087–1094 (2006).
  • Virbac. Press release: Virbac S.A. acquires the manufacturing rights for its leukemia vaccine leucogen (2004).
  • Hanlon L, Argyle D, Bain D et al. Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors. J. Virol.75(18), 8424–8433 (2001).
  • Knobel DL, Cleaveland S, Coleman PG et al. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ.83(5), 360–368 (2005).
  • Rupprecht CE, Hanlon CA, Slate D. Oral vaccination of wildlife against rabies: opportunities and challenges in prevention and control. Dev. Biol. (Basel)119, 173–184 (2004).
  • Lodmell DL, Ewalt LC, Parnell MJ, Rupprecht CE, Hanlon CA. One-time intradermal DNA vaccination in ear pinnae one year prior to infection protects dogs against rabies virus. Vaccine24(4), 412–416 (2006).
  • Brochier B, Kieny MP, Costy F et al. Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature354(6354), 520–522 (1991).
  • Bachmann P, Bramwell RN, Fraser SJ et al. Wild carnivore acceptance of baits for delivery of liquid rabies vaccine. J. Wildl. Dis.26(4), 486–501 (1990).
  • Shwiff SA, Kirkpatrick KN, Sterner RT. Economic evaluation of an oral rabies vaccination program for control of a domestic dog–coyote rabies epizootic: 1995–2006. J. Am. Vet. Med. Assoc.233(11), 1736–1741 (2008).
  • Rajesh Kumar S, Ishaq Ahmed VP, Parameswaran V, Sudhakaran R, Sarath Babu V, Sahul Hameed AS. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol.25(1–2), 47–56 (2008).
  • Jiang P, Jiang W, Li Y, Wu S, Xu J. Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol.102(3), 321–328 (2004).
  • Davis BS, Chang GJ, Cropp B et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J. Virol.75(9), 4040–4047 (2001).
  • El Garch H, Minke JM, Rehder J et al. A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse. Vet. Immunol. Immunopathol.123(3–4), 230–239 (2008).
  • Seino KK, Long MT, Gibbs EP et al. Comparative efficacies of three commercially available vaccines against West Nile Virus (WNV) in a short-duration challenge trial involving an equine WNV encephalitis model. Clin. Vaccine Immunol.14(11), 1465–1471 (2007).
  • Haupt K, Roggendorf M, Mann K. The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp. Biol. Med. (Maywood)227(4), 227–237 (2002).
  • Neglia F, Orengo AM, Cilli M et al. DNA vaccination against the ovarian carcinoma-associated antigen folate receptor a (FRa) induces cytotoxic T lymphocyte and antibody responses in mice. Cancer Gene Ther.6(4), 349–357 (1999).
  • Pupa SM, Invernizzi AM, Forti S et al. Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Ther.8(1), 75–79 (2001).
  • Ohwada A, Nagaoka I, Takahashi F, Tominaga S, Fukuchi Y. DNA vaccination against HuD antigen elicits antitumor activity in a small-cell lung cancer murine model. Am. J. Respir. Cell Mol. Biol.21(1), 37–43 (1999).
  • Lode HN, Pertl U, Xiang R, Gaedicke G, Reisfeld RA. Tyrosine hydroxylase-based DNA-vaccination is effective against murine neuroblastoma. Med. Pediatr. Oncol.35(6), 641–646 (2000).
  • Kim JJ, Trivedi NN, Wilson DM et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene17(24), 3125–3135 (1998).
  • Bergman PJ. Canine oral melanoma. Clin. Tech. Small Anim. Pract.22(2), 55–60 (2007).
  • Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL, Koohmaraie M, Dikeman ME. Bovine respiratory disease in feedlot cattle: phenotypic, environmental, and genetic correlations with growth, carcass, and longissimus muscle palatability traits. J. Anim. Sci.85(8), 1885–1892 (2007).
  • Booker CW, Abutarbush SM, Morley PS et al. The effect of bovine viral diarrhea virus infections on health and performance of feedlot cattle. Can. Vet. J.49(3), 253–260 (2008).
  • Gershwin LJ. Bovine respiratory syncytial virus infection: immunopathogenic mechanisms. Anim. Health Res. Rev.8(2), 207–213 (2007).
  • Kelling CL. Evolution of bovine viral diarrhea virus vaccines. Vet Clin. North Am. Food Anim. Pract.20(1), 115–129 (2004).
  • Taylor G, Bruce C, Barbet AF, Wyld SG, Thomas LH. DNA vaccination against respiratory syncytial virus in young calves. Vaccine23(10), 1242–1250 (2005).
  • Hamers C, Juillard V, Fischer L. DNA vaccination against pseudorabies virus and bovine respiratory syncytial virus infections of young animals in the face of maternally derived immunity. J. Comp. Pathol.137(Suppl. 1), S35–S41 (2007).
  • Kalaycioglu AT. Bovine viral diarrhoea virus (BVDV) diversity and vaccination. A review. Vet. Q29(2), 60–67 (2007).
  • Liang R, van den Hurk JV, Babiuk LA, van Drunen Littel-van den Hurk S. Priming with DNA encoding E2 and boosting with E2 protein formulated with CpG oligodeoxynucleotides induces strong immune responses and protection from bovine viral diarrhea virus in cattle. J. Gen. Virol.87(Pt 10), 2971–2982 (2006).
  • Ott SL, Wells SJ, Wagner BA. Herd-level economic losses associated with Johne’s disease on US dairy operations. Prev. Vet. Med.40(3–4), 179–192 (1999).
  • Stabel JR. Johne’s disease: a hidden threat. J. Dairy Sci.81(1), 283–288 (1998).
  • CAST. Council for Agricultural Science and Technology. Johne’s Disease in Cattle. Issue Paper 17 (2001).
  • Huntley JF, Stabel JR, Paustian ML, Reinhardt TA, Bannantine JP. Expression library immunization confers protection against Mycobacterium avium subsp. paratuberculosis infection. Infect. Immun.73(10), 6877–6884 (2005).
  • van Schaik G, Kalis CH, Benedictus G, Dijkhuizen AA, Huirne RB. Cost-benefit analysis of vaccination against paratuberculosis in dairy cattle. Vet. Rec.139(25), 624–627 (1996).
  • Beard C, Ward G, Rieder E, Chinsangaram J, Grubman MJ, Mason PW. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine. J. Biotechnol.73(2–3), 243–249 (1999).
  • Bayry J, Kaveri SV. Foot and mouth disease: a revised policy is required. J. Clin. Microbiol.39(10), 3808 (2001).
  • Fan H, Tong T, Chen H, Guo A. Immunization of DNA vaccine encoding C3d–VP1 fusion enhanced protective immune response against foot-and-mouth disease virus. Virus Genes35(2), 347–357 (2007).
  • Wang X, Zhang X, Kang Y et al. Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine26(40), 5135–5144 (2008).
  • Liao PC, Lin YL, Jong MH, Chung WB. Efficacy of foot-and-mouth disease vaccine in pigs with single dose immunization. Vaccine21(17–18), 1807–1810 (2003).
  • Li Y, Stirling CM, Denyer MS et al. Dramatic improvement in FMD DNA vaccine efficacy and cross-serotype antibody induction in pigs following a protein boost. Vaccine26(21), 2647–2656 (2008).
  • Yang CD, Liao JT, Lai CY et al. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol.7, 62 (2007).
  • Neumann EJ, Kliebenstein JB, Johnson CD et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Am. Vet. Med. Assoc.227(3), 385–392 (2005).
  • Meulenberg JJ. PRRSV, the virus. Vet. Res.31(1), 11–21 (2000).
  • Hou YH, Chen J, Tong GZ et al. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets. Vaccine26(11), 1438–1449 (2008).
  • Wills RW, Zimmerman JJ, Yoon KJ et al. Porcine reproductive and respiratory syndrome virus: routes of excretion. Vet. Microbiol.57(1), 69–81 (1997).
  • Nodelijk G, de Jong MC, van Leengoed LA et al. A quantitative assessment of the effectiveness of PRRSV vaccination in pigs under experimental conditions. Vaccine19(27), 3636–3644 (2001).
  • Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet. Microbiol.74(4), 309–329 (2000).
  • Andreasen M. Experiences with eradication of porcine reproductive and respiratory syndrome in danish swine herds. Vet. Res.31, 91–92 (2000).
  • Laddy DJ, Yan J, Kutzler M et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE3(6), e2517 (2008).
  • Laddy DJ, Yan J, Khan AS et al. Electroporation of synthetic DNA antigens offers protection in non-human primates challenged with highly pathogenic avian influenza. J. Virol.V83(9), 4624–4630 (2009).
  • Chen MW, Cheng TJ, Huang Y et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl Acad. Sci. USA105(36), 13538–13543 (2008).
  • van Aarle P. Effect of vaccination on virus excretion and transmission: summary of data on Intervet vaccines against highly pathogenic avian influenza. Ann. NY Acad. Sci.1081, 193–201 (2006).
  • Bublot M, Pritchard N, Swayne DE et al. Development and use of fowlpox vectored vaccines for avian influenza. Ann. NY Acad. Sci.1081, 193–201 (2006).
  • USDA-FAS. Hong Kong Market Development Reports: Evaluation of H5 avian influenza vaccination. Global Agriculture Information Network Report HK3203 (2003).
  • Philippa J, Baas C, Beyer W et al. Vaccination against highly pathogenic avian influenza H5N1 virus in zoos using an adjuvanted inactivated H5N2 vaccine. Vaccine25(19), 3800–3808 (2007).
  • Swayne DE, Beck JR, Perdue ML, Beard CW. Efficacy of vaccines in chickens against highly pathogenic Hong Kong H5N1 avian influenza. Avian Dis.45(2), 355–365 (2001).
  • Parry J. Vaccinating poultry against avian flu is contributing to spread. BMJ331(1223), 1223 (2005).
  • Suarez DL. Overview of avian influenza DIVA test strategies. Biologicals33(4), 221–226 (2005).
  • van Aarle P. Making avian influenza vaccines available, an industry point of view (IFAH). Dev. Biol. (Basel)124, 151–155 (2006).
  • Jiang Y, Yu K, Zhang H et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res.75(3), 234–241 (2007).
  • Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine25(16), 2984–2989 (2007).
  • Salonius K, Simard N, Harland R, Ulmer JB. The road to licensure of a DNA vaccine. Curr. Opin. Investig. Drugs8(8), 635–641 (2007).
  • Lorenzen N, LaPatra SE. DNA vaccines for aquacultured fish. Rev. Sci. Tech.24(1), 201–213 (2005).
  • Draghia-Akli R, Fiorotto ML. A new plasmid-mediated approach to supplement somatotropin production in pigs. J. Anim. Sci.82(Suppl.), E264–E269 (2004).
  • Draghia-Akli R, Pope MA, Brown PA, Khan AS. Plasmid-based expression technology using growth hormone releasing hormone: a novel method for physiologically stimulating long-term growth hormone secretion. Comb. Chem. High Throughput Screen.9(3), 181–185 (2006).
  • Person R, Bodles-Brakhop AM, Pope MA, Brown PA, Khan AS, Draghia-Akli R. Growth hormone-releasing hormone plasmid treatment by electroporation decreases offspring mortality over three pregnancies. Mol. Ther.16(11), 1891–1897 (2008).
  • Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen Littel-van den Hurk S. Induction of immune responses by DNA vaccines in large animals. Vaccine21(7–8), 649–658 (2003).
  • Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine26(3), 440–448 (2008).
  • Rosati M, Valentin A, Jalah R et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine26(40), 5223–5229 (2008).
  • Schultz RD. Duration of immunity for canine and feline vaccines: a review. Vet. Microbiol.117(1), 75–79 (2006).
  • Ford RB. Vaccines and vaccinations: guidelines vs. reality. Presented at: American Board of Veterinary Practitioners 10th Annual Practitioner’s Symposium. Washington, DC, USA, 29 April–1 May 2005.
  • Ward MP, Guptill LF, Prahl A, Wu CC. Serovar-specific prevalence and risk factors for leptospirosis among dogs: 90 cases (1997–2002). J. Am. Vet. Med. Assoc.224(12), 1958–1963 (2004).
  • Jarrett O, Ganiere JP. Comparative studies of the efficacy of a recombinant feline leukaemia virus vaccine. Vet. Rec.138(1), 7–11 (1996).
  • Poulet H, Brunet S, Boularand C et al. Efficacy of a canarypox virus-vectored vaccine against feline leukaemia. Vet. Rec.153(5), 141–145 (2003).
  • Harbour DA, Gunn-Moore DA, Gruffydd-Jones TJ et al. Protection against oronasal challenge with virulent feline leukaemia virus lasts for at least 12 months following a primary course of immunisation with Leukocell 2 vaccine. Vaccine20(23–24), 2866–2872 (2002).
  • Tesoro-Cruz E, Calderon-Rodriguez R, Hernandez-Gonzalez R, Blanco-Favela F, Aguilar-Setien A. Intradermal DNA vaccination in ear pinnae is an efficient route to protect cats against rabies virus. Vet. Res.39(2), 16 (2008).
  • Bateman KE, Catton PA, Pennock PW, Kruth SA. 0-7-21 radiation therapy for the treatment of canine oral melanoma. J. Vet. Intern. Med.8(4), 267–272 (1994).
  • Proulx DR, Ruslander DM, Dodge RK et al. A retrospective analysis of 140 dogs with oral melanoma treated with external beam radiation. Vet. Radiol. Ultrasound44(3), 352–359 (2003).
  • Rassnick KM, Ruslander DM, Cotter SM et al. Use of carboplatin for treatment of dogs with malignant melanoma: 27 cases (1989–2000). J. Am. Vet. Med. Assoc.218(9), 1444–1448 (2001).
  • MacEwen EG, Patnaik AK, Harvey HJ, Hayes AA, Matus R. Canine oral melanoma: comparison of surgery versus surgery plus Corynebacterium parvum. Cancer Invest.4(5), 397–402 (1986).
  • Bergman PJ, Camps-Palau MA, McKnight JA et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine24(21), 4582–4585 (2006).
  • Fulton RW, Confer AW, Burge LJ et al. Antibody responses by cattle after vaccination with commercial viral vaccines containing bovine herpesvirus-1, bovine viral diarrhea virus, parainfluenza-3 virus, and bovine respiratory syncytial virus immunogens and subsequent revaccination at day 140. Vaccine13(8), 725–733 (1995).
  • West K, Ellis J. Functional analysis of antibody responses of feedlot cattle to bovine respiratory syncytial virus following vaccination with mixed vaccines. Can. J. Vet. Res.61(1), 28–33 (1997).
  • Van Donkersgoed J, van den Hurk JV, McCartney D, Harland RJ. Comparative serological response in calves to eight commercial vaccines against infectious bovine rhinotracheitis, parainfluenza-3, bovine respiratory syncytial, and bovine viral diarrhea viruses. Can. Vet. J.32(12), 727–733 (1991).
  • Liang R, van den Hurk JV, Landi A et al. DNA prime protein boost strategies protect cattle from bovine viral diarrhea virus type 2 challenge. J. Gen. Virol.89(Pt 2), 453–466 (2008).
  • Nobiron I, Thompson I, Brownlie J, Collins ME. DNA vaccination against bovine viral diarrhoea virus induces humoral and cellular responses in cattle with evidence for protection against viral challenge. Vaccine21(17–18), 2082–2092 (2003).
  • Makoschey B, Janssen MG, Vrijenhoek MP, Korsten JH, Marel P. An inactivated bovine virus diarrhoea virus (BVDV) type 1 vaccine affords clinical protection against BVDV type 2. Vaccine19(23–24), 3261–3268 (2001).
  • Kovacs F, Magyar T, Rinehart C, Elbers K, Schlesinger K, Ohnesorge WC. The live attenuated bovine viral diarrhea virus components of a multi-valent vaccine confer protection against fetal infection. Vet. Microbiol.96(2), 117–131 (2003).
  • Kathaperumal K, Park SU, McDonough S et al. Vaccination with recombinant Mycobacterium avium subsp. paratuberculosis proteins induces differential immune responses and protects calves against infection by oral challenge. Vaccine26(13), 1652–1663 (2008).
  • Sechi LA, Mara L, Cappai P et al. Immunization with DNA vaccines encoding different mycobacterial antigens elicits a Th1 type immune response in lambs and protects against Mycobacterium avium subspecies paratuberculosis infection. Vaccine24(3), 229–235 (2006).
  • Wheeler R. Iowa Johne’s disease control program and vaccination fact sheet. Iowa Department of Agriculture and Land Stewardship (2008).
  • Nedrow AJ, Gavalchin J, Smith MC et al. Antibody and skin-test responses of sheep vaccinated against Johne’s disease. Vet. Immunol. Immunopathol.116(1–2), 109–112 (2007).
  • Sweeney RW, Whitlock RH, Bowersock TL, Pruitt GW. Safety and efficacy of Silirum® bovine Johne’s disease vaccine in an experimental bovine challenge model. Presented at: Ninth International Colloquium on Paratuberculosis. Tsukuba, Japan, 29 October–2 November 2007.
  • Robinson M, O’Brien R, Mackintosh C, Griffin F. Differential immune responses of red deer (Cervus elaphus) following experimental challenge with Mycobacterium avium subsp. paratuberculosis. Clin. Vaccine Immunol.15(6), 963–969 (2008).
  • Garland A. The availability of vaccines for emergency vaccination in Europe. Report of: The 32nd Session of the European Commission for the Control of Foot and Mouth Disease. Rome, Italy, Appendix 8, 89–111 (1997).
  • Benvenisti L, Rogel A, Kuznetzova L, Bujanover S, Becker Y, Stram Y. Gene gun-mediate DNA vaccination against foot-and-mouth disease virus. Vaccine19(28–29), 3885–3895 (2001).
  • Wong HT, Cheng SC, Sin FW, Chan EW, Sheng ZT, Xie Y. A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine20(21–22), 2641–2647 (2002).
  • Cedillo-Barron L, Foster-Cuevas M, Belsham GJ, Lefevre F, Parkhouse RM. Induction of a protective response in swine vaccinated with DNA encoding foot-and-mouth disease virus empty capsid proteins and the 3D RNA polymerase. J. Gen. Virol.82(Pt 7), 1713–1724 (2001).
  • Niborski V, Li Y, Brennan F et al. Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine24(49–50), 7204–7213 (2006).
  • Xue Q, Zhao YG, Zhou YJ et al. Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNg. Vet. Immunol. Immunopathol.102(3), 291–298 (2004).
  • Jiang Y, Xiao S, Fang L et al. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine24(15), 2869–2879 (2006).
  • Cano JP, Dee SA, Murtaugh MP, Pijoan C. Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate. Vaccine25(22), 4382–4391 (2007).
  • Scortti M, Prieto C, Alvarez E, Simarro I, Castro JM. Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV. Vet. Rec.161(24), 809–813 (2007).
  • Kodihalli S, Kobasa DL,Webster RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine18(23), 2592–2599 (2000).
  • Le Gall-Recule G, Cherbonnel M, Pelotte N, Blanchard P, Morin Y, Jestin V. Importance of a prime–boost DNA/protein vaccination to protect chickens against low-pathogenic H7 avian influenza infection. Avian Dis.51(1 Suppl.), 490–494 (2007).
  • Hosie MJ, Flynn N, Rigby MA et al. DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. J. Virol.72, 7310–7319 (1988).
  • Gupta S, Leutenegger CM, Dean GA, Steckbeck JD, Cole KS, Sparger EE. Vaccination with attenuated feline immunodeficiency virus proviral DNA vaccine expressing interferon γ. J. Virol.81, 465–473 (2007).
  • Dunham ST, Flynn JN, Rigby MA et al. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and -18. Vaccine20, 1483–1496 (2002).
  • Mikalsen AB, Torgersen J, Aleström P, Hellemann AL, Koppang EO, Rimstad E. Protection of atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Dis. Aquat. Organ.60(1), 11–20 (2004).
  • Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev. Comp. Immunol.26(2), 173–179 (2002).
  • Pasnik DJ, Smith SA. Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Vet. Immunol. Immunopathol.103(3–4), 195–206 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.