749
Views
66
CrossRef citations to date
0
Altmetric
Special Focus Issue: Influenza Vaccines - Review

Influenza virus-like particle vaccines

Pages 435-445 | Published online: 09 Jan 2014

References

  • Blutt SE, Warfield KL, Estes MK, Conner ME. Differential requirements for T cells in viruslike particle- and rotavirus-induced protective immunity. J. Virol.82(6), 3135–3138 (2008).
  • Antonis AF, Bruschke CJ, Rueda P et al. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine24(26), 5481–5490 (2006).
  • Yang C, Ye L, Compans RW. Protection against filovirus infection: virus-like particle vaccines. Expert. Rev. Vaccines7(3), 333–344 (2008).
  • Elmowalid GA, Qiao M, Jeong SH et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc. Natl Acad. Sci. USA104(20), 8427–8432 (2007).
  • Jeong SH, Qiao M, Nascimbeni M et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J. Virol.78(13), 6995–7003 (2004).
  • Souza M, Costantini V, Azevedo MS, Saif LJ. A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine25(50), 8448–8459 (2007).
  • Chan JK, Berek JS. Impact of the human papilloma vaccine on cervical cancer. J. Clin. Oncol.25(20), 2975–2982 (2007).
  • Reisinger KS, Block SL, Lazcano-Ponce E et al. Safety and persistent immunogenicity of a quadrivalent human papillomavirus types 6, 11, 16, 18 L1 virus-like particle vaccine in preadolescents and adolescents: a randomized controlled trial. Pediatr. Infect. Dis. J.26(3), 201–209 (2007).
  • Keating GM, Noble S. Recombinant hepatitis B vaccine (Engerix-B): a review of its immunogenicity and protective efficacy against hepatitis B. Drugs63(10), 1021–1051 (2003).
  • Guo L, Lu X, Kang SM et al. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology313(2), 502–513 (2003).
  • Huckriede A, Bungener L, Stegmann T et al. The virosome concept for influenza vaccines. Vaccine23(Suppl. 1), S26–S38 (2005).
  • Treanor J, Nolan C, O’Brien D et al. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects. Vaccine24(3), 254–262 (2006).
  • Moser C, Amacker M, Kammer AR et al. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert. Rev. Vaccines6(5), 711–721 (2007).
  • Scheiffele P, Rietveld A, Wilk T, Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem.274(4), 2038–2044 (1999).
  • Leser GP, Lamb RA. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology342(2), 215–227 (2005).
  • Takeda M, Leser GP, Russell CJ, Lamb RA. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl Acad. Sci. USA100(25), 14610–14617 (2003).
  • Barman S, Ali A, Hui EK, Adhikary L, Nayak DP. Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res.77(1), 61–69 (2001).
  • Schmitt AP, Lamb RA. Influenza virus assembly and budding at the viral budozone. Adv. Virus Res.64, 383–416 (2005).
  • Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol.74(18), 8709–8719 (2000).
  • Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J. Virol.70(10), 6653–6657 (1996).
  • Zhang J, Pekosz A, Lamb RA. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol.74(10), 4634–4644 (2000).
  • Jin H, Leser GP, Zhang J, Lamb RA. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J.16(6), 1236–1247 (1997).
  • McCown MF, Pekosz A. The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J. Virol.79(6), 3595–3605 (2005).
  • McCown MF, Pekosz A. Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J. Virol.80(16), 8178–8189 (2006).
  • Chen BJ, Leser GP, Jackson D, Lamb RA. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J. Virol.82(20), 10059–10070 (2008).
  • Gomez-Puertas P, Albo C, Perez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major driving force in virus budding. J. Virol.74(24), 11538–11547 (2000).
  • Demirov DG, Freed EO. Retrovirus budding. Virus Res, 106(2), 87–102 (2004).
  • Gheysen D, Jacobs E, de Foresta F et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell59(1), 103–112 (1989).
  • Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology251(1), 1–15 (1998).
  • Harty RN, Paragas J, Sudol M, Palese P. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J. Virol.73(4), 2921–2929 (1999).
  • Justice PA, Sun W, Li Y et al. Membrane vesiculation function and exocytosis of wild-type and mutant matrix proteins of vesicular stomatitis virus. J. Virol.69(5), 3156–3160 (1995).
  • Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl Acad. Sci. USA97(25), 13871–13876 (2000).
  • Timmins J, Schoehn G, Ricard-Blum S et al. Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J. Mol. Biol.326(2), 493–502 (2003).
  • Timmins J, Scianimanico S, Schoehn G, Weissenhorn W. Vesicular release of Ebola virus matrix protein VP40. Virology283(1), 1–6 (2001).
  • Licata JM, Johnson RF, Han Z, Harty RN. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J. Virol.78(14), 7344–7351 (2004).
  • Ciancanelli MJ, Basler CF. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J. Virol.80(24), 12070–12078 (2006).
  • Coronel EC, Murti KG, Takimoto T, Portner A. Human parainfluenza virus type 1 matrix and nucleoprotein genes transiently expressed in mammalian cells induce the release of virus-like particles containing nucleocapsid-like structures. J. Virol.73(8), 7035–7038 (1999).
  • Schmitt AP, Leser GP, Morita E, Sundquist WI, Lamb RA. Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J. Virol.79(5), 2988–2997 (2005).
  • Schmitt AP, Leser GP, Waning DL, Lamb RA. Requirements for budding of paramyxovirus simian virus 5 virus-like particles. J. Virol.76(8), 3952–3964 (2002).
  • Sugahara F, Uchiyama T, Watanabe H et al. Paramyxovirus Sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein. Virology325(1), 1–10 (2004).
  • Chen BJ, Leser GP, Morita E, Lamb RA. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J. Virol.81(13), 7111–7123 (2007).
  • Mena I, Vivo A, Perez E, Portela A. Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. J. Virol.70(8), 5016–5024 (1996).
  • Gomez-Puertas P, Mena I, Castillo M et al. Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. J. Gen. Virol.80(Pt 7), 1635–1645 (1999).
  • Neumann G, Watanabe T, Kawaoka Y. Plasmid-driven formation of influenza virus-like particles. J. Virol.74(1), 547–551 (2000).
  • Watanabe T, Watanabe S, Neumann G, Kida H, Kawaoka Y. Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. J. Virol.76(2), 767–773 (2002).
  • Neumann G, Watanabe T, Ito H et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl Acad. Sci. USA96(16), 9345–9350 (1999).
  • Cox M. Progress on baculovirus-derived influenza vaccines. Curr. Opin. Mol. Ther.10, 56–61 (2008).
  • Latham T, Galarza JM. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol.75(13), 6154–6165 (2001).
  • Pushko P, Tumpey TM, Bu F et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine23(50), 5751–5759 (2005).
  • Bright RA, Carter DM, Daniluk S et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine25(19), 3871–3878 (2007).
  • Quan FS, Huang C, Compans RW, Kang SM. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol.81(7), 3514–3524 (2007).
  • Matassov D, Cupo A, Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol.20(3), 441–452 (2007).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE3(1), E1501 (2008).
  • Mahmood K, Bright RA, Mytle N et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine26(42), 5393–5399 (2008).
  • Manie SN, de Breyne S, Vincent S, Gerlier D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J. Virol.74(1), 305–311 (2000).
  • Nguyen DH, Hildreth JE. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol.74(7), 3264–3272 (2000).
  • Pickl WF, Pimentel-Muinos FX, Seed B. Lipid rafts and pseudotyping. J. Virol.75(15), 7175–7183 (2001).
  • Briggs JA, Wilk T, Fuller SD. Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol.84(Pt 4), 757–768 (2003).
  • Pike LJ. Lipid rafts: bringing order to chaos. J. Lipid Res.44(4), 655–667 (2003).
  • Scheiffele P, Roth MG, Simons K. Interaction of influenza virus haemagglutinin with sphingolipid–cholesterol membrane domains via its transmembrane domain. EMBO J.16(18), 5501–5508 (1997).
  • Barman S, Adhikary L, Chakrabarti AK et al. Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding. J. Virol.78(10), 5258–5269 (2004).
  • Leung K, Kim JO, Ganesh L et al. HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe3(5), 285–292 (2008).
  • Panchal RG, Ruthel G, Kenny TA et al.In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc. Natl Acad. Sci. USA100(26), 15936–15941 (2003).
  • Manes S, del Real G, Martinez AC. Pathogens: raft hijackers. Nat. Rev. Immunol.3(7), 557–568 (2003).
  • Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P. Cellular proteins in influenza virus particles. PLoS Pathog.4(6), e1000085 (2008).
  • Szecsi J, Boson B, Johnsson P et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol. J.3, 70 (2006).
  • Haynes JR, Dokken L, Wiley JA et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine27(4), 530–541 (2009).
  • Haffar O, Garrigues J, Travis B et al. Human immunodeficiency virus-like, nonreplicating, Gag–Env particles assemble in a recombinant vaccinia virus expression system. J. Virol.64(6), 2653–2659 (1990).
  • Haynes JR, Cao SX, Rovinski B et al. Production of immunogenic HIV-1 viruslike particles in stably engineered monkey cell lines. AIDS Res. Hum. Retroviruses7(1), 17–27 (1991).
  • Karacostas V, Nagashima K, Gonda MA, Moss B. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc. Natl Acad. Sci. USA86(22), 8964–8967 (1989).
  • Rovinski B, Haynes JR, Cao SX et al. Expression and characterization of genetically engineered human immunodeficiency virus-like particles containing modified envelope glycoproteins: implications for development of a cross-protective AIDS Vaccine. J. Virol.66(7), 4003–4012 (1992).
  • Yamshchikov GV, Ritter GD, Vey M, Compans RW. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology214(1), 50–58 (1995).
  • Rein A, McClure MR, Rice NR, Luftig RB, Schultz AM. Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc. Natl Acad. Sci. USA83(19), 7246–7250 (1986).
  • Schultz AM, Rein A. Unmyristylated Moloney murine leukemia virus Pr65gag is excluded from virus assembly and maturation events. J. Virol.63(5), 2370–2373 (1989).
  • Yu Z, Beer C, Koester M, Wirth M. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production. Virol. J.3, 73 (2006).
  • McKay T, Patel M, Pickles RJ, Johnson LG, Olsen JC. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther.13(8), 715–724 (2006).
  • D’Aoust MA, Lavoie PO, Couture MM et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J.6(9), 930–940 (2008).
  • Galarza JM, Latham T, Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol.18(1), 244–251 (2005).
  • Pushko P, Tumpey TM, Van Hoeven N et al. Evaluation of influenza virus-like particles and Novasome adjuvant as candidate vaccine for avian influenza. Vaccine25(21), 4283–4290 (2007).
  • Crevar CJ, Ross TM. Elicitation of protective immune responses using a bivalent H5N1 VLP vaccine. Virol. J.5, 131 (2008).
  • Quan FS, Steinhauer D, Huang C et al. A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine26(26), 3352–3361 (2008).
  • Wang BZ, Quan FS, Kang SM et al. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol.82(23), 11813–11823 (2008).
  • Terajima M, Cruz J, Leporati AM et al. Influenza A virus matrix protein 1-specific human CD8+ T-cell response induced in trivalent inactivated vaccine recipients. J. Virol.82(18), 9283–9287 (2008).
  • De Filette M, Fiers W, Martens W et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine24(44–46), 6597–6601 (2006).
  • De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology337(1), 149–161 (2005).
  • Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W. A ‘universal’ human influenza A vaccine. Virus Res.103(1–2), 173–176 (2004).
  • Lamb RA, Zebedee SL, Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell40(3), 627–633 (1985).
  • Zebedee SL, Lamb RA. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol.62(8), 2762–2772 (1988).
  • Zebedee SL, Richardson CD, Lamb RA. Characterization of the influenza virus M2 integral membrane protein and expression at the infected-cell surface from cloned cDNA. J. Virol.56(2), 502–511 (1985).
  • Sandbulte MR, Jimenez GS, Boon AC et al. Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLoS Med.4(2), e59 (2007).
  • Abe T, Hemmi H, Miyamoto H et al. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol.79(5), 2847–2858 (2005).
  • Abe T, Takahashi H, Hamazaki H et al. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol.171(3), 1133–1139 (2003).
  • Gronowski AM, Hilbert DM, Sheehan KC, Garotta G, Schreiber RD. Baculovirus stimulates antiviral effects in mammalian cells. J. Virol.73(12), 9944–9951 (1999).
  • Harrison RL, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce ‘mammalianized’ recombinant glycoproteins. Adv.Virus Res.68, 159–191 (2006).
  • Kuroda K, Geyer H, Geyer R, Doerfler W, Klenk HD. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology174(2), 418–429 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.