13,465
Views
612
CrossRef citations to date
0
Altmetric
Review

Virus-like particles in vaccine development

, , , &
Pages 1149-1176 | Published online: 09 Jan 2014

References

  • Kleid DG, Yansura D, Small B et al. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science214(4525), 1125–1129 (1981).
  • Michel ML, Tiollais P. Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol. Biol. (Paris)58(4), 288–295 (2010).
  • Noad R, Roy P. Virus-like particles as immunogens. Trends Microbiol.11(9), 438–444 (2003).
  • Jegerlehner A, Storni T, Lipowsky G et al. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol.32(11), 3305–3314 (2002).
  • Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol.169(11), 6120–6126 (2002).
  • Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr. Opin. Biotechnol.18(6), 537–545 (2007).
  • Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect. Dis.2(7), 395–403 (2002).
  • Kane MA, Brooks A. New immunization initiatives and progress toward the global control of hepatitis B. Curr. Opin. Infect. Dis.15(5), 465–469 (2002).
  • Kane MA, Sherris J, Coursaget P, Aguado T, Cutts F. Chapter 15: HPV vaccine use in the developing world. Vaccine24(Suppl. 3), 132–139 (2006).
  • Valenzuela P, Gray P, Quiroga M et al. Nucleotide sequence of the gene coding for the major protein of hepatitis B virus surface antigen. Nature280(5725), 815–819 (1979).
  • Sninsky JJ, Siddiqui A, Robinson WS, Cohen SN. Cloning and endonuclease mapping of the hepatitis B viral genome. Nature279(5711), 346–348 (1979).
  • Burrell CJ, Mackay P, Greenaway PJ, Hofschneider PH, Murray K. Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322. Nature279(5708), 43–47 (1979).
  • Charnay P, Pourcel C, Louise A, Fritsch A, Tiollais P. Cloning in Escherichia coli and physical structure of hepatitis B virion DNA. Proc. Natl Acad. Sci. USA76(5), 2222–2226 (1979).
  • Fritsch A, Pourcel C, Charnay P, Tiollais P. Cloning of the hepatitis B virus genome in Escherichia coli. CR Hebd. Seances Acad. Sci. Ser. D Sci. Nat.287(16), 1453–1456 (1978).
  • Vassileva A, Chugh DA, Swaminathan S, Khanna N. Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif.21(1), 71–80 (2001).
  • Janowicz ZA, Melber K, Merckelbach A et al. Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast7(5), 431–443 (1991).
  • Michel ML, Pontisso P, Sobczak E et al. Synthesis in animal cells of hepatitis B surface antigen particles carrying a receptor for polymerized human serum albumin. Proc. Natl Acad. Sci. USA81(24), 7708–7712 (1984).
  • Miyanohara A, Toh-e A, Nozaki C et al. Expression of hepatitis B surface antigen gene in yeast. Proc. Natl Acad. Sci. USA80(1), 1–5 (1983).
  • Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature298(5872), 347–350 (1982).
  • Zhou W, Bi J, Janson J-C et al. Molecular characterization of recombinant hepatitis B surface antigen from Chinese hamster ovary and Hansenula polymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering. J. Chromatogr. B838(2), 71–77 (2006).
  • Hardy E, Martinez E, Diago D et al. Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. J. Biotechnol.77(2–3), 157–167 (2000).
  • Shapira MY, Zeira E, Adler R, Shouval D. Rapid seroprotection against hepatitis B following the first dose of a Pre-S1/Pre-S2/S vaccine. J. Hepatol.34(1), 123–127 (2001).
  • Bucher B, Francioli P, Geudelin B et al. Immunogenicity of a recombinant Pre-S2-containing hepatitis B vaccine versus plasma-derived vaccine administered as a booster. Eur. J. Clin. Microbiol. Infect. Dis.13(3), 212–217 (1994).
  • Villa LL. Prophylactic HPV vaccines: reducing the burden of HPV-related diseases. Vaccine24(Suppl. 1), S23–S28 (2006).
  • Bouvard V, Baan R, Straif K et al. A review of human carcinogens – part B: biological agents. Lancet Oncol.10(4), 321–322 (2009).
  • D’Souza G, Kreimer AR, Viscidi R et al. Case–control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med.356(19), 1944–1956 (2007).
  • Parkin DM, Bray F. Chapter 2: the burden of HPV-related cancers. Vaccine24(Suppl. 3), S3/11–25 (2006).
  • Baker TS, Newcomb WW, Olson NH et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J.60(6), 1445–1456 (1991).
  • Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell.5(3), 557–567 (2000).
  • Suzich JA, Ghim SJ, Palmer-Hill FJ et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl Acad. Sci. USA92(25), 11553–11557 (1995).
  • Rose RC, Bonnez W, Reichman RC, Garcea RL. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J. Virol.67(4), 1936–1944 (1993).
  • Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol.67(1), 315–322 (1993).
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA89(24), 12180–12184 (1992).
  • Buckland BC. The process development challenge for a new vaccine. Nat. Med.11(4 Suppl.), S16–S19 (2005).
  • Schiller JT, Castellsague X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine26(Suppl. 10), K53–K61 (2008).
  • Smith JF, Brownlow M, Brown M et al. Antibodies from women immunized with Gardasil cross-neutralize HPV 45 pseudovirions. Hum. Vaccin.3(4), 109–115 (2007).
  • Pinto LA, Edwards J, Castle PE et al. Cellular immune responses to human papillomavirus (HPV)-16 L1 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles. J. Infect. Dis.188(2), 327–338 (2003).
  • Emeny RT, Wheeler CM, Jansen KU et al. Priming of human papillomavirus type 11-specific humoral and cellular immune responses in college-aged women with a virus-like particle vaccine. J. Virol.76(15), 7832–7842 (2002).
  • Latham T, Galarza JM. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol.75(13), 6154–6165 (2001).
  • Pushko P, Tumpey TM, Bu F et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in Balb/C mice. Vaccine23(50), 5751–5759 (2005).
  • Bright RA, Carter DM, Daniluk S et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine25(19), 3871–3878 (2007).
  • Pushko P, Tumpey TM, Van Hoeven N et al. Evaluation of influenza virus-like particles and Novasome adjuvant as candidate vaccine for avian influenza. Vaccine25(21), 4283–4290 (2007).
  • Quan FS, Huang C, Compans RW, Kang SM. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol.81(7), 3514–3524 (2007).
  • Galarza JM, Latham T, Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol.18(1), 244–251 (2005).
  • Shelly D, Cleave VV. Parvovirus B19 VLP vaccine manufacturing. Genet. Eng. Biotechnol. News29(16), 1–4 (2009).
  • Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin. Immunol.108(3), 241–247 (2003).
  • Ramqvist T, Andreasson A, Dalianis T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin. Biol. Ther.7(7), 997–1007 (2007).
  • Neirynck S, Deroo T, Saelens X et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10), 1157–1163 (1999).
  • Weber J, Cheinsong-Popov R, Callow D et al. Immunogenicity of the yeast recombinant p17/p24:Ty virus-like particles (p24-VLP) in healthy volunteers. Vaccine13(9), 831–834 (1995).
  • Schodel F, Wirtz R, Peterson D et al. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. J. Exp. Med.180(3), 1037–1046 (1994).
  • Rutgers T, Gordon D, Gathoye AM et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nat. Biotechnol.6, 1065–1070 (1988).
  • Maurer P, Jennings GT, Willers J et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur. J. Immunol.35(7), 2031–2040 (2005).
  • Ambuhl PM, Tissot AC, Fulurija A et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and Phase I safety and immunogenicity. J. Hypertens25(1), 63–72 (2007).
  • Fiers W, De Filette M, El Bakkouri K et al. M2e-based universal influenza A vaccine. Vaccine27(45), 6280–6283 (2009).
  • Adams SE, Dawson KM, Gull K, Kingsman SM, Kingsman AJ. The expression of hybrid HIV:Ty virus-like particles in yeast. Nature329(6134), 68–70 (1987).
  • Peters BS, Cheingsong-Popov R, Callow D et al. A pilot Phase II study of the safety and immunogenicity of HIV p17/p24:VLP (p24-VLP) in asymptomatic HIV seropositive subjects. J. Infect.35(3), 231–235 (1997).
  • Lisziewicz J, Bakare N, Lori F. Therapeutic vaccination for future management of HIV/AIDS. Vaccine21(7–8), 620–623 (2003).
  • Smith D, Gow I, Colebunders R et al. Therapeutic vaccination (p24-VLP) of patients with advanced HIV-1 infection in the pre-HAART era does not alter CD4 cell decline. HIV Med.2(4), 272–275 (2001).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun.72(11), 6519–6527 (2004).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Moorthy V, Reed Z, Smith PG. Measurement of malaria vaccine efficacy in Phase III trials: report of a WHO consultation. Vaccine25(28), 5115–5123 (2007).
  • Cornuz J, Zwahlen S, Jungi WF et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One3(6), e2547 (2008).
  • Tissot AC, Maurer P, Nussberger J et al. Effect of immunisation against angiotensin II with CYT006-AngQβ on ambulatory blood pressure: a double-blind, randomised, placebo-controlled Phase IIa study. Lancet371(9615), 821–827 (2008).
  • Storni T, Ruedl C, Schwarz K et al. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol.172(3), 1777–1785 (2004).
  • Matthias S, Karl-Heinz W, Alain CT et al. O1–06–01: Immunization with Aβ1–6 coupled to the virus-like particle Qβ (CAD106) efficiently removes β-amyloid without inducing Aβ-reactive T-cells. Alzheimers Dement.2(3), S20 (2006).
  • Bengt W. S2–04–06: safety, tolerability and immunogenicity of the Ab immunotherapeutic vaccine CAD106 in a first-in-man study in Alzheimer patients. Alzheimers Dement.4(4), T128 (2008).
  • Kallstrom G, Warfield KL, Swenson DL et al. Analysis of Ebola virus and VLP release using an immunocapture assay. J. Virol. Methods127(1), 1–9 (2005).
  • Fromentin R, Majeau N, Laliberté Gagné ME et al. A method for in vitro assembly of hepatitis C virus core protein and for screening of inhibitors. Anal. Biochem.366(1), 37–45 (2007).
  • Hou L, Wu H, Xu L, Yang F. Expression and self-assembly of virus-like particles of infectious hypodermal and hematopoietic necrosis virus in Escherichia coli. Arch. Virol.154(4), 547–553 (2009).
  • Yu F, Joshi SM, Ma YM et al. Characterization of Rous sarcoma virus Gag particles assembled in vitro. J. Virol.75(6), 2753–2764 (2001).
  • Lai WB, Middelberg APJ. The production of human papillomavirus type 16 vaccine product from Escherichia coli inclusion bodies. Bioprocess. Biosyst. Eng.25, 121–128 (2002).
  • Zhang W, Carmichael J, Ferguson J et al. Expression of human papillomavirus type 16 L1 protein in Escherichia coli: denaturation, renaturation, and self-assembly of virus-like particles in vitro. Virology243(2), 423–431 (1998).
  • Chromy LR, Pipas JM, Garcea RL. Chaperone-mediated in vitro assembly of Polyomavirus capsids. Proc. Natl Acad. Sci. USA100(18), 10477–10482 (2003).
  • Davis TR, Wood HA. Intrinsic glycosylation potentials of insect cell cultures and insect larvae. In Vitro Cell Dev. Biol. Anim.31(9), 659–663 (1995).
  • Sun Y, Carrion R, Jr., Ye L et al. Protection against lethal challenge by Ebola virus-like particles produced in insect cells. Virology383(1), 12–21 (2009).
  • Betenbaugh M, Yu M, Kuehl K et al. Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus. Virus Res.38(2–3), 111–124 (1995).
  • Lechmann M, Murata K, Satoi J et al. Hepatitis C virus-like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology34(2), 417–423 (2001).
  • Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. Virol.75(Pt 5), 1101–1113 (1994).
  • Warfield KL, Posten NA, Swenson DL et al. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J. Infect. Dis.196(Suppl. 2), 421–429 (2007).
  • Nagy E, Huber P, Krell PJ, Derbyshire JB. Synthesis of Newcastle disease virus (NDV)-like envelopes in insect cells infected with a recombinant baculovirus expressing the haemagglutinin-neuraminidase of NDV. J. Gen. Virol.72(Pt 3), 753–756 (1991).
  • Almanza H, Cubillos C, Angulo I et al. Self-assembly of the recombinant capsid protein of a swine norovirus into virus-like particles and evaluation of monoclonal antibodies cross-reactive with a human strain from genogroup II. J. Clin. Microbiol.46(12), 3971–3979 (2008).
  • Agrawal DK, Johnson JE. Assembly of the T = 4 Nudaurelia capensis omega virus capsid protein, post-translational cleavage, and specific encapsidation of its mRNA in a baculovirus expression system. Virology207(1), 89–97 (1995).
  • Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M. Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J. Mol. Biol.299(3), 573–584 (2000).
  • Liu L, Celma CC, Roy P. Rift Valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins. Virol. J.5, 82 (2008).
  • Hervas-Stubbs S, Rueda P, Lopez L, Leclerc C. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. J. Immunol.178(4), 2361–2369 (2007).
  • Rueda P, Fominaya J, Langeveld JP et al. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine19(7–8), 726–734 (2000).
  • Shioda T, Shibuta H. Production of human immunodeficiency virus (HIV)-like particles from cells infected with recombinant vaccinia viruses carrying the gag gene of HIV. Virology175(1), 139–148 (1990).
  • Haglund K, Forman J, Krausslich HG, Rose JK. Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology268(1), 112–121 (2000).
  • Fernandez-Arias A, Risco C, Martinez S, Albar JP, Rodriguez JF. Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. J. Gen. Virol.79(Pt 5), 1047–1054 (1998).
  • Levy HC, Bowman VD, Govindasamy L et al. Heparin binding induces conformational changes in adeno-associated virus serotype 2. J. Struct. Biol.165(3), 146–156 (2009).
  • Hammonds J, Chen X, Zhang X, Lee F, Spearman P. Advances in methods for the production, purification and characterization of HIV-1 Gag-Env pseudovirion vaccines. Vaccine25, 8036–8048 (2007).
  • Swenson DL, Warfield KL, Negley DL et al. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine23(23), 3033–3042 (2005).
  • Taube S, Kurth A, Schreier E. Generation of recombinant norovirus-like particles (VLP) in the human endothelial kidney cell line 293T. Arch. Virol.150(7), 1425–1431 (2005).
  • Holzer GW, Mayrhofer J, Leitner J et al. Overexpression of hepatitis B virus surface antigens including the preS1 region in a serum-free Chinese hamster ovary cell line. Protein Expr. Purif.29(1), 58–69 (2003).
  • Lee T, Inokoshi J, Namiki M, Takeshima H, Omura S. Production of hepatitis B virus surface antigen containing pre-S1 and pre-S2 domains by Chinese hamster ovary cells. Arch. Virol.106(1–2), 151–158 (1989).
  • Ma Z, Yi X, Zhang Y. Enhanced intracellular accumulation of recombinant HBsAg in CHO cells by dimethyl sulfoxide. Process Biochem.43, 690–695 (2008).
  • Madalinski K, Sylvan SP, Hellstrom U et al. Antibody responses to preS components after immunization of children with low doses of BioHepB. Vaccine20(1–2), 92–97 (2001).
  • Matsuo E, Tani H, Lim C et al. Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochem. Biophys. Res. Commun.340(1), 200–208 (2006).
  • Wang KC, Wu JC, Chung YC et al. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis δ virus antigens in mammalian cells. Biotechnol. Bioeng.89(4), 464–473 (2005).
  • Chen YH, Wu JC, Wang KC et al. Baculovirus-mediated production of HDV-like particles in BHK cells using a novel oscillating bioreactor. J. Biotechnol.118(2), 135–147 (2005).
  • Ehsani P, Khabiri A, Domansky NN. Polypeptides of hepatitis B surface antigen produced in transgenic potato. Gene190(1), 107–111 (1997).
  • Maloney BJ, Takeda N, Suzaki Y et al. Challenges in creating a vaccine to prevent hepatitis E. Vaccine23(15), 1870–1874 (2005).
  • Warzecha H, Mason HS, Lane C et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol.77(16), 8702–8711 (2003).
  • Mason HS, Ball JM, Shi JJ et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl Acad. Sci. USA93(11), 5335–5340 (1996).
  • Huang Z, Elkin G, Maloney BJ et al. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine23(15), 1851–1858 (2005).
  • Smith ML, Mason HS, Shuler ML. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng.80(7), 812–822 (2002).
  • Kapusta J, Modelska A, Figlerowicz M et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J.13(13), 1796–1799 (1999).
  • Bragard C, Duncan GH, Wesley SV, Naidu RA, Mayo MA. Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. J. Gen. Virol.81(Pt 1), 267–272 (2000).
  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng.103(4), 706–714 (2009).
  • Huang Z, Mason HS. Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnol. J.2(3), 241–249 (2004).
  • Huang Z, Santi L, LePore K et al. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine24(14), 2506–2513 (2006).
  • Sojikul P, Buehner N, Mason HS. A plant signal peptide-hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells. Proc. Natl Acad. Sci. USA100(5), 2209–2214 (2003).
  • Lim GMA. Transgenic plants in therapeutically valuable protein production. Transgenic Plant J.1, 256–266 (2007).
  • Boijoux O, Boutonnet C, Giamarchi C et al. Chemical-based translational induction of luciferase expression: an efficient tool for in vivo screening of protein farnesylation inhibitors. Mol. Pharmacol.67(6), 1829–1833 (2005).
  • Roos AK, Eriksson F, Timmons JA et al. Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One4(9), e7226 (2009).
  • Bertram J. MATra - Magnet assisted transfection: combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids. Curr. Pharm. Biotechnol.7(4), 277–285 (2006).
  • Coroadinha AS, Schucht R, Gama-Norton L et al. The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J. Biotechnol.124(2), 457–468 (2006).
  • Zhao QQ, Chen JL, Lv TF et al. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol. Pharm. Bull.32(4), 706–710 (2009).
  • Zheng XZ, Li HL, Du LF, Wang HP, Gu Q. Comparative analysis of gene transfer to human and rat retinal pigment epithelium cell line by a combinatorial use of recombinant adeno- associated virus and ultrasound or/and microbubbles. Bosn J. Basic Med. Sci.9(3), 174–181 (2009).
  • Molinas MMB, Beer C, Hesse F et al. Intracellular nucleotide pools for optimizing product-oriented transient transfection of HEK293 cells in suspension. In: 18th ESACT Meeting: Animal Cell Technology Meets Genomics. Gòdia FF M (Ed.). Springer, The Netherlands, 83–86 (2003).
  • Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC. Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol. Biotechnol.39(2), 141–153 (2008).
  • Masotti A, Mossa G, Cametti C et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: parameters influencing toxicity and transfection efficiency. Colloids Surf. B Biointerfaces68(2), 136–144 (2009).
  • Chong KW, Lee AY, Koay ES, Seet SJ, Cheung NS. pH dependent high transfection efficiency of mouse neuroblastomas using TransFectin. J. Neurosci. Methods158(1), 56–63 (2006).
  • Jacobsen LB, Calvin SA, Colvin KE, Wright M. FuGENE 6 Transfection Reagent: the gentle power. Methods33(2), 104–112 (2004).
  • Wu CY, Yeh YC, Yang YC et al. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One5(3), e9784 (2010).
  • Harvey TJ, Liu WJ, Wang XJ et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J. Virol.78(1), 531–538 (2004).
  • Hong S, Hwang D-Y, Yoon S et al. Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Mol. Ther.15(9), 1630–1639 (2007).
  • Morris TD, Miller LK. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J. Virol.66(12), 7397–7405 (1992).
  • Pajot-Augy E, Bozon V, Remy JJ, Couture L, Salesse R. Critical relationship between glycosylation of recombinant lutropin receptor ectodomain and its secretion from baculovirus-infected insect cells. Eur. J. Biochem.260(3), 635–648 (1999).
  • Roldão A, Carrondo MJT, Alves PM, Oliveira R. Stochastic simulation of protein expression in the baculovirus/insect cells system. Comput. Chem. Eng.32(1–2), 68–77 (2008).
  • Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol. Bioeng.104(1), 162–180 (2009).
  • Cruz PE, Cunha A, Peixoto CC et al. Optimization of the production of virus-like particles in insect cells. Biotechnol. Bioeng.60(4), 408–418 (1998).
  • Xi SZ, Banks LM. Baculovirus expression of the human papillomavirus type 16 capsid proteins: detection of L1-L2 protein complexes. J. Gen. Virol.72(Pt 12), 2981–2988 (1991).
  • Cruz PE, Peixoto CC, Moreira JL, Carrondo MJT. Production and quality analysis of Pr55gag particles produced in baculovirus-infected insect cells. J. Chem. Technol. Biotechnol.72(2), 149–158 (1999).
  • Ferreira TB, Ferreira AL, Carrondo MJ, Alves PM. Effect of re-feed strategies and non-ammoniagenic medium on adenovirus production at high cell densities. J. Biotechnol.119(3), 272–280 (2005).
  • Power JF, Reid S, Radford KM, Greenfield PF, Nielsen LK. Modeling and optimization of the baculovirus expression vector system in batch suspension culture. Biotechnol. Bioeng.44(6), 710–719 (1994).
  • Ferreira TB, Carrondo MJ, Alves PM. Effect of ammonia production on intracellular pH: Consequent effect on adenovirus vector production. J. Biotechnol.129(3), 433–438 (2007).
  • Carinhas N, Bernal V, Monteiro F et al. Improving baculovirus production at high cell density through manipulation of energy metabolism. Metab. Eng.12(1), 39–52 (2009).
  • Lee YY, Wong KT, Nissom PM, Wong DC, Yap MG. Transcriptional profiling of batch and fed-batch protein-free 293-HEK cultures. Metab. Eng.9(1), 52–67 (2007).
  • Maranga L, Brazao TF, Carrondo MJ. Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol. Bioeng.84(2), 245–253 (2003).
  • van Lier FL, van Duijnhoven GC, de Vaan MM, Vlak JM, Tramper J. Continuous β-galactosidase production in insect cells with a p10 gene based baculovirus vector in a two-stage bioreactor system. Biotechnol. Prog.10(1), 60–64 (1994).
  • Kompier R, Tramper J, Vlak JM. A continuous process for the production of baculovirus using insect cell cultures. Biotechnol. Lett.10, 849–854 (1988).
  • Caron AW, Tom RL, Kamen AA, Massie B. Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures. Biotechnol. Bioeng.43(9), 881–891 (1994).
  • Kumar N, Gammell P, Meleady P, Henry M, Clynes M. Differential protein expression following low temperature culture of suspension CHO-K1 cells. BMC Biotechnol.8, 42 (2008).
  • Maranga L, Cunha A, Clemente J, Cruz P, Carrondo MJ. Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. J. Biotechnol.107(1), 55–64 (2004).
  • Murhammer D, Goochee C. Scale up of insect cell cultures: protective effects of Pluronic F-68. Biotechnol.6, 1411–1418 (1988).
  • Xie L, Metallo C, Warren J et al. Large-scale propagation of a replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 cell culture under sparging conditions. Biotechnol. Bioeng.83(1), 45–52 (2003).
  • Wang MY, Pulliam TR, Valle M, Vakharia VN, Bentley WE. Kinetic analysis of alkaline protease activity, recombinant protein production and metabolites for infected insect (Sf9) cells under different DO levels. J. Biotechnol.46, 243–245 (1996).
  • Konz JO, King J, Cooney CL. Effects of oxygen on recombinant protein expression. Biotechnol. Prog.14(3), 393–409 (1998).
  • Mellado MCM, Mena JA, Lopes A et al. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotech. Bioeng.104(4), 674–686 (2009).
  • Roldão A, Mellado MCM, Lima JC et al. A computational model for multilayered virus-like particles (VLP) assembly: the case of a rotavirus VLP. Biophys. J. (2010) (In Press).
  • Rodrigues T, Carvalho A, Carmo M et al. Scaleable purification process for gene therapy retroviral vectors. J. Gene Med.9(4), 233–243 (2007).
  • Tsuchida N, Bhaduri S, Raskas HJ, Green M. Partial purification of intracellular murine sarcoma-leukemia virus RNA species by membrane filtration. Intervirology1(1), 27–33 (1973).
  • Aboud M, Wolfson M, Hassan Y, Huleihel M. Rapid purification of extracellular and intracellular Moloney murine leukemia virus. Arch. Virol.71(3), 185–195 (1982).
  • Peixoto C, Sousa MF, Silva AC, Carrondo MJ, Alves PM. Downstream processing of triple layered rotavirus like particles. J. Biotechnol.127(3), 452–461 (2007).
  • Mellado MC, Peixoto C, Cruz PE, Carrondo MJ, Alves PM. Purification of recombinant rotavirus VP7 glycoprotein for the study of in vitro rotavirus-like particles assembly. J. Chromatogr. B874(1–2), 89–94 (2008).
  • Peixoto C, Ferreira TB, Sousa MF, Carrondo MJ, Alves PM. Towards purification of adenoviral vectors based on membrane technology. Biotechnol. Prog.24(6), 1290–1296 (2008).
  • Vicente T, Peixoto C, Carrondo MJ, Alves PM. Purification of recombinant baculoviruses for gene therapy using membrane processes. Gene Ther.16(6), 766–775 (2009).
  • Negrete A, Ling TC, Lyddiatt A. Production of adenoviral vectors and its recovery. Process Biochem.42(7), 1107–1113 (2007).
  • Moreira JL, Alves PM, Feliciano AS, Aunins JG, Carrondo MJT. Serum-free and serum-containing media for growth of suspended BHK aggregates in stirred vessels. Enzyme Microb. Technol.17(5), 437–444 (1995).
  • Vicente T, Sousa MFQ, Peixoto C et al. Anion-exchange membrane chromatography for purification of rotavirus-like particles. J. Membr. Sci.311(1–2), 270–283 (2008).
  • Morenweiser R. Downstream processing of viral vectors and vaccines. Gene Ther.12(Suppl. 1), S103–S110 (2005).
  • Vieira H, Estêvão C, Roldão A et al. Triple layered rotavirus VLP assembly: kinetics of vector replication, mRNA stability and recombinant protein production. J. Biotechnol.120(1), 72–82 (2005).
  • Meghrous J, Aucoin MG, Jacob D et al. Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-l bioreactor. Biotechnol. Prog.21(1), 154–160 (2005).
  • Mena JA, Ramirez OT, Palomares LA. Quantification of rotavirus-like particles by gel permeation chromatography. J. Chromatogr. B824(1–2), 267–276 (2005).
  • Mellado MC, Franco C, Coelho A, Alves PM, Simplicio AL. Sodium dodecyl sulfate-capillary gel electrophoresis analysis of rotavirus-like particles. J. Chromatogr. A1192(1), 166–172 (2008).
  • Franco CF, Mellado MCM, Alves PM, Coelho AV. Monitoring virus-like particle and viral protein production by intact cell MALDI-TOF mass spectrometry. Talanta80(4), 1561–1518 (2009).
  • Teixeira AP, Portugal CA, Carinhas N et al.In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol. Bioeng.102(4), 1098–1106 (2009).
  • Teixeira AP, Oliveira R, Alves PM, Carrondo MJ. Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol. Adv.27(6), 726–732 (2009).
  • Murawski MR, McGinnes LW, Finberg RW et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in Balb/C mice, with no evidence of immunopathology. J. Virol.84(2), 1110–1123 (2009).
  • Jegerlehner A, Tissot A, Lechner F et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine20(25–26), 3104–3112 (2002).
  • Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biol. Chem.389(5), 521–536 (2008).
  • Chackerian B, Lowy DR, Schiller JT. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Invest.108(3), 415–423 (2001).
  • Gleiter S, Lilie H. Coupling of antibodies via protein Z on modified polyoma virus-like particles. Protein Sci.10(2), 434–444 (2001).
  • Lechner F, Jegerlehner A, Tissot AC et al. Virus-like particles as a modular system for novel vaccines. Intervirology45(4–6), 212–217 (2002).
  • Ionescu RM, Przysiecki CT, Liang X et al. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J. Pharm. Sci.95(1), 70–79 (2006).
  • Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods40(1), 60–65 (2006).
  • Lai CY, Hu HP, King CC, Wang WK. Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2. J. Biomed. Sci.15(1), 15–27 (2008).
  • Slupetzky K, Gambhira R, Culp TD et al. A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine25(11), 2001–2010 (2007).
  • Willis S, Davidoff C, Schilling J et al. Virus-like particles as quantitative probes of membrane protein interactions. Biochemistry47(27), 6988–6990 (2008).
  • Jones JW, Greene TA, Grygon CA, Doranz BJ, Brown MP. Cell-free assay of G-protein-coupled receptors using fluorescence polarization. J. Biomol. Screen13(5), 424–429 (2008).
  • Ohtake N, Niikura K, Suzuki T et al. Low pH-triggered model drug molecule release from virus-like particles. Chembiochem.11(7), 959–962 (2010).
  • Aucoin MG, Jacob D, Chahal PS et al. Virus-like particle and viral vector production using the baculovirus expression vector system/insect cell system: adeno-associated virus-based products. Methods Mol. Biol.388, 281–296 (2007).
  • Prel A, Le Gall-Recule G, Jestin V. Achievement of avian influenza virus-like particles that could be used as a subunit vaccine against low-pathogenic avian influenza strains in ducks. Avian Pathol.37(5), 513–520 (2008).
  • Rodgers RE, Chang D, Cai X, Consigli RA. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly. J. Virol.68(5), 3386–3390 (1994).
  • French TJ, Marshall JJ, Roy P. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J. Virol.64(12), 5695–5700 (1990).
  • Chung YC, Huang JH, Lai CW et al. Expression, purification and characterization of enterovirus-71 virus-like particles. World J. Gastroenterol.12(6), 921–927 (2006).
  • Zielonka A, Gedvilaite A, Ulrich R et al. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res.120(1–2), 128–137 (2006).
  • Cregg JM, Tschopp JF, Stillamn C et al. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast. Pichia pastoris. Biotechnology5, 479–485 (1987).
  • Gu MB, Park MH, Kim DI. Growth rate control in fed-batch cultures of recombinant Saccharomyces cerevisiae producing hepatitis B surface antigen (HBsAg). Appl. Microbiol. Biotechnol.35(1), 46–30 (1991).
  • Kee GS, Jin J, Balasundaram B et al. Exploiting the intracellular compartmentalization characteristics of the S. cerevisiae host cell for enhancing primary purification of lipid-envelope virus-like particles. Biotechnol. Prog.26(1), 26–33 (2009).
  • Takehara K, Ireland D, Bishop DH. Co-expression of the hepatitis B surface and core antigens using baculovirus multiple expression vectors. J. Gen. Virol.69(Pt 11), 2763–2777 (1988).
  • Bundy BC, Franciszkowicz MJ, Swartz JR. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol. Bioeng.100(1), 28–37 (2008).
  • Zlotnick A, Cheng N, Conway JF et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry35(23), 7412–7421 (1996).
  • James ER, van Zyl WH, Gorgens JF. Increased hepatitis B surface antigen production by recombinant Aspergillus niger through the optimization of agitation and dissolved oxygen concentration. Appl. Microbiol. Biotechnol.75(2), 279–288 (2007).
  • Sastri M, Kekuda R, Gopinath K et al. Assembly of physalis mottle virus capsid protein in Escherichia coli and the role of amino and carboxy termini in the formation of the icosahedral particles. J. Mol. Biol.272(4), 541–552 (1997).
  • Wagner R, Deml L, Notka F et al. Safety and immunogenicity of recombinant human immunodeficiency virus-like particles in rodents and rhesus macaques. Intervirology39(1–2), 93–103 (1996).
  • Sakuragi S, Goto T, Sano K, Morikawa Y. HIV type 1 Gag virus-like particle budding from spheroplasts of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA99(12), 7956–7961 (2002).
  • Pillay S, Meyers A, Williamson AL, Rybicki EP. Optimization of chimeric HIV-1 virus-like particle production in a baculovirus-insect cell expression system. Biotechnol. Prog.25(4), 1153–1160 (2009).
  • Park MA, Kim HJ, Kim HJ. Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr. Purif.59(1), 175–181 (2008).
  • Bazan SB, de Alencar Muniz Chaves A, Aires KA et al. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Arch. Virol.154(10), 1609–1617 (2009).
  • Schadlich L, Senger T, Kirschning CJ, Muller M, Gissmann L. Refining HPV 16 L1 purification from E. coli: reducing endotoxin contaminations and their impact on immunogenicity. Vaccine27(10), 1511–1522 (2009).
  • Hu YC, Bentley WE. Effect of MOI ratio on the composition and yield of chimeric infectious bursal disease virus-like particles by baculovirus co-infection: deterministic predictions and experimental results. Biotechnol. Bioeng.75(1), 104–119 (2001).
  • Krammer F, Schinko T, Palmberger D et al. Trichoplusia ni cells (High Five(™)) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol. Biotechnol.45(3), 226–234 (2010).
  • Goldmann C, Petry H, Frye S et al. Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. J. Virol.73(5), 4465–4469 (1999).
  • Sasnauskas K, Bulavaite A, Hale A et al. Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology45(4–6), 308–317 (2002).
  • Hooker JM, Kovacs EW, Francis MB. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc.126(12), 3718–3719 (2004).
  • Legendre D, Fastrez J. Production in Saccharomyces cerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs. J. Biotechnol.117(2), 183–194 (2005).
  • McGinnes LW, Pantua H, Laliberte JP et al. Assembly and biological and immunological properties of Newcastle disease virus-like particles. J. Virol.84(9), 4513–4523 (2010).
  • Xia M, Farkas T, Jiang X. Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J. Med. Virol.79(1), 74–83 (2007).
  • Tan M, Zhong W, Song D, Thornton S, Jiang X. E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. J. Med. Virol.74(4), 641–649 (2004).
  • Jiang X, Wang M, Graham DY, Estes MK. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol.66(11), 6527–6532 (1992).
  • Chandran D, Shahana PV, Rani GS et al. Display of neutralizing epitopes of canine parvovirus and a T-cell epitope of the fusion protein of canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against canine parvo and canine distemper. Vaccine28(1), 132–139 (2009).
  • Montross L, Watkins S, Moreland RB et al. Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1. J. Virol.65(9), 4991–4998 (1991).
  • Leavitt AD, Roberts TM, Garcea RL. Polyoma virus major capsid protein, VP1. Purification after high level expression in Escherichia coli. J. Biol. Chem.260(23), 12803–12809 (1985).
  • Maranga L, Rueda P, Antonis AF et al. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl. Microbiol. Biotechnol.59(1), 45–50 (2002).
  • Laurent S, Vautherot JF, Madelaine MF, Le Gall G, Rasschaert D. Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J. Virol.68(10), 6794–6798 (1994).
  • Kim Y, Chang KO, Kim WY, Saif LJ. Production of hybrid double- or triple-layered virus-like particles of group A and C rotaviruses using a baculovirus expression system. Virology3021–8 (2002).
  • Jiang B, Barniak V, Smith RP et al. Synthesis of rotavirus-like particles in insect cells: comparative and quantitative analysis. Biotechnol. Bioeng.60(3), 369–374 (1998).
  • Molinari P, Peralta A, Taboga O. Production of rotavirus-like particles in Spodoptera frugiperda larvae. J. Virol. Methods147(2), 364–367 (2008).
  • Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett.576(1–2), 174–178 (2004).
  • Yamshchikov GV, Ritter GD, Vey M, Compans RW. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology214(1), 50–58 (1995).
  • Kanesashi SN, Ishizu K, Kawano MA et al. Simian virus 40 VP1 capsid protein forms polymorphic assemblies in vitro. J. Gen. Virol.84(Pt 7), 1899–1905 (2003).
  • Ko YJ, Choi KS, Nah JJ et al. Noninfectious virus-like particle antigen for detection of swine vesicular disease virus antibodies in pigs by enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol.12(8), 922–929 (2005).
  • Quan FS, Compans RW, Nguyen HH, Kang SM. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J. Virol.82(3), 1350–1359 (2008).
  • Wang BZ, Quan FS, Kang SM et al. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol.82(23), 11813–11823 (2008).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One3(1), e1501 (2008).
  • Mahmood K, Bright RA, Mytle N et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine26(42), 5393–5399 (2008).
  • Crevar CJ, Ross TM. Elicitation of protective immune responses using a bivalent H5N1 VLP vaccine. Virol. J.5, 131 (2008).
  • Kang SM, Yoo DG, Lipatov AS et al. Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One4(3), e4667 (2009).
  • D’Aoust MA, Lavoie PO, Couture MM et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J.6(9), 930–940 (2008).
  • Haynes JR, Dokken L, Wiley JA et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine27(4), 530–541 (2009).
  • Szecsi J, Boson B, Johnsson P et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol. J.3, 70 (2006).
  • Krammer F, Nakowitsch S, Messner P et al. Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in Balb/C mice. Biotechnol. J.5(1), 17–23 (2009).
  • Quan FS, Vunnava A, Compans RW, Kang SM. Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PLoS One5(2), e9161 (2010).
  • Matassov D, Cupo A, Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol.20(3), 441–452 (2007).
  • Kang SM, Song JM, Quan FS, Compans RW. Influenza vaccines based on virus-like particles. Virus Res.143(2), 140–146 (2009).
  • Liu WJ, Liu XS, Zhao KN, Leggatt GR, Frazer IH. Papillomavirus virus-like particles for the delivery of multiple cytotoxic T cell epitopes. Virology273(2), 374–382 (2000).
  • Zamora E, Handisurya A, Shafti-Keramat S et al. Papillomavirus-like particles are an effective platform for amyloid-β immunization in rabbits and transgenic mice. J. Immunol.177(4), 2662–2670 (2006).
  • Kratz PA, Bottcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl Acad. Sci. USA96(5), 1915–1920 (1999).
  • Lee KW, Tan WS. Recombinant hepatitis B virus core particles: association, dissociation and encapsidation of green fluorescent protein. J. Virol. Methods151, 172–180 (2008).
  • Mihailova M, Boos M, Petrovskis I et al. Recombinant virus-like particles as a carrier of B- and T-cell epitopes of hepatitis C virus (HCV). Vaccine24(20), 4369–4377 (2006).
  • Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology44(2–3), 98–114 (2001).
  • Pumpens P, Razanskas R, Pushko P et al. Evaluation of HBs, HBc, and frCP virus-like particles for expression of human papillomavirus 16 E7 oncoprotein epitopes. Intervirology45(1), 24–32 (2002).
  • De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology337(1), 149–161 (2005).
  • Jin H, Xiao W, Xiao C et al. Protective immune responses against foot-and-mouth disease virus by vaccination with a DNA vaccine expressing virus-like particles. Viral Immunol.20(3), 429–440 (2007).
  • Bisht H, Chugh DA, Raje M, Swaminathan SS, Khanna N. Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. J. Biotechnol.99(2), 97–110 (2002).
  • Eckhart L, Raffelsberger W, Ferko B et al. Immunogenic presentation of a conserved gp41 epitope of human immunodeficiency virus type 1 on recombinant surface antigen of hepatitis B virus. J. Gen. Virol.77(Pt 9), 2001–2008 (1996).
  • Netter HJ, Macnaughton TB, Woo WP, Tindle R, Gowans EJ. Antigenicity and immunogenicity of novel chimeric hepatitis B surface antigen particles with exposed hepatitis C virus epitopes. J. Virol.75(5), 2130–2141 (2001).
  • Schlienger K, Mancini M, Riviere Y et al. Human immunodeficiency virus type 1 major neutralizing determinant exposed on hepatitis B surface antigen particles is highly immunogenic in primates. J. Virol.66(4), 2570–2576 (1992).
  • Niikura M, Takamura S, Kim G et al. Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology293(2), 273–280 (2002).
  • Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol. Immunol.42(2), 259–277 (2005).
  • Doan LX, Li M, Chen C, Yao Q. Virus-like particles as HIV-1 vaccines. Rev. Med. Virol.15(2), 75–88 (2005).
  • Buonaguro L, Buonaguro FM, Tornesello ML et al. High efficient production of Pr55(gag) virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. Antiviral Res.49(1), 35–47 (2001).
  • Guo L, Lu X, Kang SM et al. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology313(2), 502–513 (2003).
  • Dale CJ, Liu XS, De Rose R et al. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: immunogenicity and protective efficacy in macaques. Virology301(1), 176–187 (2002).
  • Frazer IH, Quinn M, Nicklin JL et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine23(2), 172–181 (2004).
  • Sadeyen JR, Tourne S, Shkreli M, Sizaret PY, Coursaget P. Insertion of a foreign sequence on capsid surface loops of human papillomavirus type 16 virus-like particles reduces their capacity to induce neutralizing antibodies and delineates a conformational neutralizing epitope. Virology309(1), 32–40 (2003).
  • Wakabayashi MT, Da Silva DM, Potkul RK, Kast WM. Comparison of human papillomavirus type 16 L1 chimeric virus-like particles versus L1/L2 chimeric virus-like particles in tumor prevention. Intervirology45(4–6), 300–307 (2002).
  • Paz De la Rosa G, Monroy-Garcia A, Mora-Garcia Mde L et al. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol. J.6, 2 (2009).
  • Oh YK, Sohn T, Park JS et al. Enhanced mucosal and systemic immunogenicity of human papillomavirus-like particles encapsidating interleukin-2 gene adjuvant. Virology328(2), 266–273 (2004).
  • Chackerian B, Rangel M, Hunter Z, Peabody DS. Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine24(37–39), 6321–6331 (2006).
  • Krammer F, Schinko T, Messner P et al. Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J. Virol. Methods167(1), 17–22 (2010).
  • Citkowicz A, Petry H, Harkins RN et al. Characterization of virus-like particle assembly for DNA delivery using asymmetrical flow field-flow fractionation and light scattering. Anal. Biochem.376(2), 163–172 (2008).
  • Brinkman M, Walter J, Grein S et al. Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1-coat protein carrying self or non-self CD8 T cell epitopes against murine melanoma. Cancer Immunol. Immunother.54(6), 611–622 (2005).
  • Amexis G, Young NS. Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of dengue 2 virus. J. Infect. Dis.194(6), 790–794 (2006).
  • Maurer P, Bachmann MF. Therapeutic vaccines for nicotine dependence. Curr. Opin. Mol. Ther.8(1), 11–16 (2006).
  • Spohn G, Keller I, Beck M et al. Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur. J. Immunol.38(3), 877–887 (2008).
  • Peacey M, Wilson S, Baird MA, Ward VK. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol. Bioeng.98(5), 968–977 (2007).
  • Kimchi-Sarfaty C, Gottesman MM. SV40 pseudovirions as highly efficient vectors for gene transfer and their potential application in cancer therapy. Curr. Pharm. Biotechnol.5(5), 451–458 (2004).
  • Takahashi RU, Kanesashi SN, Inoue T et al. Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J. Biotechnol.135(4), 385–392 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.