848
Views
40
CrossRef citations to date
0
Altmetric
Review

Respective roles of TLR, RIG-I and NLRP3 in influenza virus infection and immunity: impact on vaccine design

Pages 1315-1324 | Published online: 09 Jan 2014

References

  • La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol.85(2), 85–92 (2007).
  • Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today13(1), 11–16 (1992).
  • Janeway CA Jr. How the immune system recognizes invaders. Sci. Am.269(3), 72–79 (1993).
  • Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Ann. Rev. Immunol.28, 321–342 (2010).
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Ann. Rev. Immunol.28, 367–388 (2010).
  • Takada A, Matsushita S, Ninomiya A, Kawaoka Y, Kida H. Intranasal immunization with formalin-inactivated virus vaccine induces a broad spectrum of heterosubtypic immunity against influenza A virus infection in mice. Vaccine21(23), 3212–3218 (2003).
  • Tumpey TM, Renshaw M, Clements JD, Katz JM. Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection. J. Virol.75(11), 5141–5150 (2001).
  • Koyama S, Aoshi T, Tanimoto T et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med.2(25), 25ra24 (2010).
  • Ichinohe T, Tamura S, Kawaguchi A et al. Cross-protection against H5N1 influenza virus infection is afforded by intranasal inoculation with seasonal trivalent inactivated influenza vaccine. J. Infect. Dis.196(9), 1313–1320 (2007).
  • Ichinohe T, Watanabe I, Ito S et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J. Virol.79(5), 2910–2919 (2005).
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (NY)303(5663), 1529–1531 (2004).
  • Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA101(15), 5598–5603 (2004).
  • Kato H, Sato S, Yoneyama M et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23(1), 19–28 (2005).
  • Rehwinkel J, Tan CP, Goubau D et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell140(3), 397–408 (2010).
  • Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol.11(5), 404–410 (2010).
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science (NY)327(5963), 291–295 (2010).
  • Le Goffic R, Balloy V, Lagranderie M et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Path.2(6), e53 (2006).
  • Schmitz N, Kurrer M, Bachmann MF, Kopf M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol.79(10), 6441–6448 (2005).
  • Allen IC, Scull MA, Moore CB et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity30(4), 556–565 (2009).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol.3(2), 196–200 (2002).
  • Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science (NY)303(5663), 1526–1529 (2004).
  • Bracci L, Canini I, Puzelli S et al. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine23(23), 2994–3004 (2005).
  • Ito T, Amakawa R, Kaisho T et al. Interferon-α and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med.195(11), 1507–1512 (2002).
  • Krug A, Towarowski A, Britsch S et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol.31(10), 3026–3037 (2001).
  • Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.168(9), 4531–4537 (2002).
  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol.31(11), 3388–3393 (2001).
  • Kadowaki N, Ho S, Antonenko S et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194(6), 863–869 (2001).
  • Asselin-Paturel C, Boonstra A, Dalod M et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol.2(12), 1144–1150 (2001).
  • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science (NY)315(5817), 1398–1401 (2007).
  • Kumagai Y, Takeuchi O, Kato H et al. Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses. Immunity27(2), 240–252 (2007).
  • Pichlmair A, Schulz O, Tan CP et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates. Science (NY)314(5801), 997–1001 (2006).
  • Guo Z, Chen LM, Zeng H et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am. J. Resp. Cell Mol. Biol.36(3), 263–269 (2007).
  • Opitz B, Rejaibi A, Dauber B et al. IFNβ induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell. Microbiol.9(4), 930–938 (2007).
  • Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M Jr, Garcia-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of β interferon by the NS1 protein of influenza A virus. J. Virol.81(2), 514–524 (2007).
  • Geurts van Kessel CH, Willart MA, van Rijt LS et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J. Exp. Med.205(7), 1621–1634 (2008).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev.1(2), 135–145 (2001).
  • Geurts van Kessel CH, Willart MA, Bergen IM et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med.206(11), 2339–2349 (2009).
  • Kim TS, Braciale TJ. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PloS One4(1), e4204 (2009).
  • Ballesteros-Tato A, Leon B, Lund FE, Randall TD. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8(+) T cell responses to influenza. Nat. Immunol.11(3), 216–224 (2010).
  • Belz GT, Smith CM, Kleinert L et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA101(23), 8670–8675 (2004).
  • McGill J, Van Rooijen N, Legge KL. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med.205(7), 1635–1646 (2008).
  • McGill J, Van Rooijen N, Legge KL. IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J. Exp. Med.207(3), 521–534 (2010).
  • Lui G, Manches O, Angel J, Molens JP, Chaperot L, Plumas J. Plasmacytoid dendritic cells capture and cross-present viral antigens from influenza-virus exposed cells. PloS One4(9), e7111 (2009).
  • Lopez CB, Moltedo B, Alexopoulou L, Bonifaz L, Flavell RA, Moran TM. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J. Immunol.173(11), 6882–6889 (2004).
  • Koyama S, Ishii KJ, Kumar H et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol.179(7), 4711–4720 (2007).
  • Heer AK, Shamshiev A, Donda A et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol.178(4), 2182–2191 (2007).
  • Geeraedts F, Goutagny N, Hornung V et al. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog.4(8), e1000138 (2008).
  • Seki M, Higashiyama Y, Tomono K et al. Acute infection with influenza virus enhances susceptibility to fatal pneumonia following Streptococcus pneumoniae infection in mice with chronic pulmonary colonization with Pseudomonas aeruginosa. Clin. Exp. Immunol.137(1), 35–40 (2004).
  • Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat. Med.14(5), 558–564 (2008).
  • Shahangian A, Chow EK, Tian X et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J. Clin. Invest.119(7), 1910–1920 (2009).
  • Gunzer M, Riemann H, Basoglu Y et al. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood106(7), 2424–2432 (2005).
  • Stegemann S, Dahlberg S, Kroger A et al. Increased susceptibility for superinfection with Streptococcus pneumoniae during influenza virus infection is not caused by TLR7-mediated lymphopenia. PloS One4(3), e4840 (2009).
  • Jamieson AM, Yu S, Annicelli CH, Medzhitov R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe7(2), 103–114 (2010).
  • Didierlaurent A, Goulding J, Patel S et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med.205(2), 323–329 (2008).
  • de Jong MD, Simmons CP, Thanh TT et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med.12(10), 1203–1207 (2006).
  • Itoh Y, Shinya K, Kiso M et al.In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature460(7258), 1021–1025 (2009).
  • Wolf AI, Buehler D, Hensley SE et al. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J. Immunol.182(2), 871–879 (2009).
  • Hammerbeck DM, Burleson GR, Schuller CJ et al. Administration of a dual Toll-like receptor 7 and Toll-like receptor 8 agonist protects against influenza in rats. Antiviral Res.73(1), 1–11 (2007).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5(7), 730–737 (2004).
  • Kato H, Takeuchi O, Sato S et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441(7089), 101–105 (2006).
  • Hornung V, Ellegast J, Kim S et al. 5´-triphosphate RNA is the ligand for RIG-I. Science (NY)314(5801), 994–997 (2006).
  • Schlee M, Roth A, Hornung V et al. Recognition of 5´ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity31(1), 25–34 (2009).
  • Rehwinkel J, Reis e Sousa C. RIGorous detection: exposing virus through RNA sensing. Science (NY)327(5963), 284–286 (2010).
  • Kawai T, Takahashi K, Sato S et al. IPS-1, an adaptor triggering RIG-I- and MDA5-mediated type I interferon induction. Nat. Immunol.6(10), 981–988 (2005).
  • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell122(5), 669–682 (2005).
  • Meylan E, Curran J, Hofmann K et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437(7062), 1167–1172 (2005).
  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell19(6), 727–740 (2005).
  • Moore CB, Bergstralh DT, Duncan JA et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature451(7178), 573–577 (2008).
  • Tattoli I, Carneiro LA, Jehanno M et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Reports9(3), 293–300 (2008).
  • Chakravarthy KV, Bonoiu AC, Davis WG et al. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc. Natl Acad. Sci. USA107(22), 10172–10177 (2010).
  • Ranjan P, Jayashankar L, Deyde V et al. 5´PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication. Virol. J.7, 102 (2010).
  • Talon J, Salvatore M, O’Neill RE et al. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc. Natl Acad. Sci. USA97(8), 4309–4314 (2000).
  • Min JY, Krug RM. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2´-5´ oligo (A) synthetase/RNase L pathway. Proc. Natl Acad. Sci. USA103(18), 7100–7105 (2006).
  • Gack MU, Albrecht RA, Urano T et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe5(5), 439–449 (2009).
  • Gack MU, Shin YC, Joo CH et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature446(7138), 916–920 (2007).
  • Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Ann. Rev. Immunol.27, 229–265 (2009).
  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol.7(2), 99–109 (2009).
  • Ting JP, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat. Rev.8(5), 372–379 (2008).
  • Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev.7(1), 31–40 (2007).
  • Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med.206(1), 79–87 (2009).
  • Thomas PG, Dash P, Aldridge JR Jr et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity30(4), 566–575 (2009).
  • Schroder K, Tschopp J. The inflammasomes. Cell140(6), 821–832 (2010).
  • Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev.10(3), 210–215 (2010).
  • Sutterwala FS, Ogura Y, Szczepanik M et al. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity24(3), 317–327 (2006).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the NALP3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453(7198), 1122–1126 (2008).
  • Watanabe H, Gaide O, Petrilli V et al. Activation of the IL-1β-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol.127(8), 1956–1963 (2007).
  • Kool M, Petrilli V, De Smedt T et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181(6), 3755–3759 (2008).
  • McKee AS, Munks MW, MacLeod MK et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol.183(7), 4403–4414 (2009).
  • Franchi L, Nunez G. The NLRP3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol.38(8), 2085–2089 (2008).
  • Ichinohe T, Kawaguchi A, Tamura S et al. Intranasal immunization with H5N1 vaccine plus Poly I:Poly C12U, a Toll-like receptor agonist, protects mice against homologous and heterologous virus challenge. Microbes Infect.9(11), 1333–1340 (2007).
  • Ichinohe T, Ainai A, Ami Y et al. Intranasal administration of adjuvant-combined vaccine protects monkeys from challenge with the highly pathogenic influenza A H5N1 virus. J. Med. Virol.82(10), 1754–1761 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.