92
Views
10
CrossRef citations to date
0
Altmetric
Key Paper Evaluation

Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas

Pages 1251-1256 | Published online: 09 Jan 2014

References

  • Bello C, Sotomayor EM. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. Hematology2007, 233–242 (2007).
  • Ratanatharathorn V, Pavletic S, Uberti JP. Clinical applications of rituximab in allogeneic stem cell transplantation: anti-tumor and immunomodulatory effects. Cancer Treat. Rev.35(8), 653–661 (2009).
  • Cartron G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa gene. Blood99(3), 754–758 (2002).
  • Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol.21(21), 3940–3947 (2003).
  • Ghielmini M, Rufibach K, Salles G et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer Research (SAKK). Ann. Oncol., 16(10), 1675–1682 (2005).
  • Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene22(47), 7359–7368 (2003).
  • Alas S, Emmanouilides C, Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of Bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin. Cancer Res.7(3), 709–723 (2001).
  • Selenko N, Maidic O, Draxier S et al. CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia15(10), 1619–1626 (2001).
  • McLaughlin P, Grillo-Lopez AJ, Link BK et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol.16(8), 2825–2833 (1998).
  • Davis TA, Grillo-Lopez AJ, White CA et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol.18(17), 3135–3143 (2000).
  • Weiner GJ, Bowles JA, Link BK, Campbell MA, Wooldridge JE, Breitmeyer JB. An anti-CD20 monoclonal antibody (mAb) with enhanced affinity for CD16 activates NK cells at a lower concentrations and more effectively than rituximab. Blood106, 108(8), 2648–2654 (2005).
  • Mossner E, Brunker P, Moser S et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood115(22), 4393–4402 (2010).
  • Kreitman RJ, Margulies I, Stetler-Stevenson M, Wang QC, FitzGerald DJ, Pastan I. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) toward fresh malignant cells from patients with B-cell leukemias. Clin. Cancer Res.6(4), 1476–1487 (2000).
  • Kreitman RJ, Wilson WH, Bergeron K et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med.345(4), 241–247 (2001).
  • DiJoseph JF, Dougher MM, Kalyandrug LB et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin. Cancer Res.12(1), 242–249 (2006).
  • Dijoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia21(11), 2240–2245 (2007).
  • Du X, Beers R, Fitzgerald DJ, Pastan I. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity. Cancer Res.68(15), 6300–6305 (2008).
  • Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood115(23), 4778–4786 (2010).
  • Castillo J, Winer E, Quesenberry P. Newer monoclonal antibodies for hematological malignancies. Exp. Hematol.36(7), 755–768 (2008).
  • Molina A. A decade of rituximab: improving survival outcomes in non-Hodgkin’s lymphoma. Annu. Rev. Med.59, 237–250 (2008).
  • Evans LS, Hancock BW. Non-Hodgkin lymphoma. Lancet362(9378), 139–146 (2003).
  • Haas KM, Sen S, Sanford IG, Miller AS, Poe JC, Tedder TF. CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J. Immunol.177(5), 3063–3073 (2006).
  • Collins BE, Blixt O, Han S et al. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol.177(5), 2994–3003 (2006).
  • Ghetie MA, Tucker K, Richardson J, Uhr JW, Vitetta ES. Eradication of minimal disease in severe combined immunodeficient mice with disseminated Daudi lymphoma using chemotherapy and an immunotoxin cocktail. Blood84(3), 702–707 (1994).
  • Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood97(2), 528–535 (2001).
  • Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv. J. Control. Release126(1), 50–58 (2008).
  • Zaccai NR, Maenaka K, Maenaka T et al. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure11(5), 557–567 (2003).
  • Blixt O, Han S, Liao L et al. Sialoside analogue arrays for rapid identification of high affinity siglec ligands. J. Am. Chem. Soc.130(21), 6680–6681 (2008).
  • Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood97(1), 288–296 (2001).
  • Ghetie MA, Richardson J, Tucker T, Jones D, Uhr JW, Vitetta ES. Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int. J. Cancer45(3), 481–485 (1990).
  • Eccles SA. Monoclonal antibodies targeting cancer: ‘magic bullets’ or just the trigger?. Breast Cancer Res.3(2), 86–90 (2001).
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov. Today9(15), 641–651 (2004).
  • Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer6(9), 714–727 (2006).
  • Bello C, Sotomayor EM. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. Hematology233–242 (2007).
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4(2), 145–160 (2005).
  • Taylor ME, Drickamer K. Paradigms for glycan-binding receptors in cell adhesion. Curr. Opin. Cell. Biol.19(5), 572–577 (2007).
  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell126(5), 855–867 (2006).
  • Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep.7(6), 599–604 (2006).
  • Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit. Rev. Biochem. Mol. Biol.42(6), 481–515 (2007).
  • Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat. Rev. Immunol.7(4), 255–266 (2007).
  • van Kooyk Y, Rabinovich GA. Protein–glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol.9(6), 593–601 (2008).
  • Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr. Opin. Chem. Biol.8(6), 617–625 (2004).
  • Collins BE, Blixt O, DeSieno AR, Bovin N, Marth JD, Paulson JC. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl Acad. Sci. USA101(16), 6104–6109 (2004).
  • Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem. Rev.102(2), 555–578 (2002).
  • Aviles A, Neri N, Castaneda C, Talavera A, Huerta-Guzman J, Gonzalez M. Pegylated liposomal doxorubicin in combination chemotherapy in the treatment of previously untreated aggressive diffuse large-B-cell lymphoma. Med. Oncol.19(1), 55–58 (2002).
  • Tsavaris N, Kosmas C, Vadiaka M et al. Pegylated liposomal doxorubicin in the CHOP regimen for older patients with aggressive (stages III/IV) non-Hodgkin’s lymphoma. Anti Cancer Res.22(3), 1845–1848 (2002).
  • Levine AM, Tulpule A, Espina B et al. Liposome-encapsulated doxorubicin in combination with standard agents (cyclophosphamide, vincristine, prednisone) in patients with newly diagnosed AIDS-related non-Hodgkin’s lymphoma: results of therapy and correlates of response. J. Clin. Oncol.22(13), 2662–2670 (2004).
  • Bruehl RE, Dasgupta F, Katsumoto TR et al. Polymerized liposome assemblies: bifunctional macromolecular selectin inhibitors mimicking physiological selectin ligands. Biochemistry40(20), 5964–5974 (2001).
  • Ikehara Y, Niwa T, Biao L et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res.66(17), 8740–8748 (2006).
  • Hashida N, Ohguro N, Yamazaki N et al. High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp. Eye Res.86(1), 138–149 (2008).
  • Ikehara Y, Shiuchi N, Kabata-Ikehara S et al. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett.260(1–2), 137–145 (2008).
  • O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol. Sci.30(5), 240–248 (2009).
  • Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med. Res. Rev.30(2), 270–289 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.