122
Views
13
CrossRef citations to date
0
Altmetric
Review

Immunomodulation for prion and prion-related diseases

&
Pages 1441-1452 | Published online: 09 Jan 2014

References

  • Cobb NJ, Surewicz WK. Prion diseases and their biochemical mechanisms. Biochemistry48(12), 2574–2585 (2009).
  • Aguzzi A, Sigurdson C, Heikenwalder M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol.3, 11–40 (2008).
  • Prusiner SB. Neurodegenerative diseases and prions. N. Eng. J. Med.344(20), 1516–1526 (2001).
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982).
  • Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain129(Pt 9), 2241–2265 (2006).
  • Brown P. Transmissible spongiform encephalopathy in the 21st Century: neuroscience for the clinical neurologist. Neurology70(9), 713–722 (2008).
  • Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert Rev. Anti. Infect. Ther.7(1), 83–105 (2009).
  • Li L, Napper S, Cashman NR. Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy2(2), 269–282 (2010).
  • Marsh RF, Kincaid AE, Bessen RA, Bartz JC. Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J. Virol.79(21), 13794–13796 (2005).
  • Sigurdson CJ. A prion disease of cervids: chronic wasting disease. Vet. Res.39(4), 41 (2008).
  • Race B, Meade-White KD, Miller MW et al. Susceptibilities of nonhuman primates to chronic wasting disease. Emerg. Infect. Dis.15(9), 1366–1376 (2009).
  • Gambetti P, Dong Z, Yuan J et al. A novel human disease with abnormal prion protein sensitive to protease. Ann. Neurol.63, 697–708 (2008).
  • Griffith JS. Self-replication and scrapie. Nature215, 1043–1044 (1967).
  • Collinge J. Molecular neurology of prion disease. J. Neurol. Neurosurg. Psychiatry76, 906–919 (2005).
  • Wickner RB. A new prion controls fungal cell fusion incompatibility. Proc. Natl Acad. Sci. USA94(19), 10012–10014 (1997).
  • Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science273(5275), 622–626 (1996).
  • Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T. Prions of fungi: inherited structures and biological roles. Nat. Rev. Microbiol.5(8), 611–618 (2007).
  • Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet.40(4), 460–465 (2008).
  • King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature428(6980), 319–323 (2004).
  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature428(6980), 323–328 (2004).
  • Legname G, Baskakov IV, Nguyen HO et al. Synthetic mammalian prions. Science305(5684), 673–676 (2004).
  • Colby DW, Wain R, Baskakov IV et al. Protease-sensitive synthetic prions. PLoS. Pathog.6(1), e1000736 (2010).
  • Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell121(2), 195–206 (2005).
  • Supattapone S, Deleault NR, Rees JR. Amplification of purified prions in vitro. Methods Mol. Biol.459, 117–130 (2008).
  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C. De novo generation of infectious prions In vitro produces a new disease phenotype. PLoS Pathog.5(5), e1000421 (2009).
  • Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature411(6839), 810–813 (2001).
  • Deleault NR, Harris BT, Rees JR, Supattapone S. Formation of native prions from minimal components in vitro. Proc. Natl Acad. Sci. USA104(23), 9741–9746 (2007).
  • Geoghegan JC, Miller MB, Kwak AH, Harris BT, Supattapone S. Trans-dominant inhibition of prion propagation In vitro is not mediated by an accessory cofactor. PLoS Pathog.5(7), e1000535 (2009).
  • Wang F, Wang X, Yuan CG, Ma J. Generating a prion with bacterially expressed recombinant prion protein. Science327(5969), 1132–1135 (2010).
  • Kim JI, Cali I, Surewicz K et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem.285(19), 14083–14087 (2010).
  • Jendroska K, Heinzel FP, Torchia M et al. Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology41(9), 1482–1490 (1991).
  • Kretzschmar H, Prusiner SB, Stowring LE, DeArmond SJ. Scrapie prion protein are synthesized in neurons. Am. J. Pathol.122, 1–5 (1986).
  • Cashman NR, Loertscher R, Nalbantoglu J et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell61(1), 185–192 (1990).
  • Brown DR, Qin K, Herms JW et al. The cellular prion protein binds copper in vivo. Nature390, 684–687 (1997).
  • Mitteregger G, Korte S, Shakarami M, Herms J, Kretzschmar HA. Role of copper and manganese in prion disease progression. Brain Res.1292, 155–164 (2009).
  • Qin K, Yang Y, Mastrangelo P, Westaway D. Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J. Biol. Chem.277(3), 1981–1990 (2002).
  • Qin K, Yang DS, Yang Y et al. Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J. Biol. Chem.275(25), 19121–19131 (2000).
  • Davies P, Brown DR. Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS ONE4(10), e7518 (2009).
  • Brazier MW, Volitakis I, Kvasnicka M et al. Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J. Neurochem.14(2), 440–451 (2010).
  • Sigurdsson EM, Brown DR, Alim MA et al. Copper chelation delays the onset of prion disease. J. Biol. Chem.278, 46199–46202 (2003).
  • Brown DR. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans.(21), 4069–4076 (2009).
  • Bueler H, Fischer M, Lang Y et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature356, 577–582 (1992).
  • Collinge J, Whittington MA, Sidle KC et al. Prion protein is necessary for normal synaptic function. Nature370, 295–297 (1994).
  • Tobler I, Gaus SE, Deboer T et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature380(6575), 639–642 (1996).
  • Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrPC): its physiological function and role in disease. Biochim. Biophys. Acta1772(6), 629–644 (2007).
  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol. Rev.88(2), 673–728 (2008).
  • Pasupuleti M, Roupe M, Rydengard V et al. Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS ONE4(10), e7358 (2009).
  • Manson JC, Cancellotti E, Hart P, Bishop MT, Barron RM. The transmissible spongiform encephalopathies: emerging and declining epidemics. Biochem. Soc. Trans.34(Pt 6), 1155–1158 (2006).
  • Butler R. Prion diseases in humans: an update. Br. J. Psychiatry189, 295–296 (2006).
  • Smith PG, Cousens SN, d’Huillard Aignaux JN, Ward HJ, Will RG. The epidemiology of variant Creutzfeldt–Jakob disease. Curr. Top. Microbiol. Immunol.284, 161–191 (2004).
  • Ironside JW. Variant Creutzfeldt–Jakob disease. Haemophilia16(Suppl. 5), 175–180 (2010).
  • Hilton DA. Pathogenesis and prevalence of variant Creutzfeldt–Jakob disease. J. Pathol.208(2), 134–141 (2006).
  • Brown P, Brandel JP, Preese M, Sato T. Iatrogenic Creutzfeldt–Jakob disease: the waning of an era. Neurology67(3), 389–393 (2006).
  • Bishop MT, Hart P, Aitchison L et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol.5(5), 393–398 (2006).
  • Clarke P, Will RG, Ghani AC. Is there the potential for an epidemic of variant Creutzfeldt–Jakob disease via blood transfusion in the UK? J. R. Soc. Interface4(15), 675–684 (2007).
  • Kong Q, Zheng M, Casalone C et al. Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain. J. Virol.82(7), 3697–3701 (2008).
  • Williams ES. Chronic wasting disease. Vet. Pathol.42(5), 530–549 (2005).
  • Aguzzi A, Sigurdson CJ. Antiprion Immunotherapy: to suppress or to stimulate? Nat. Rev. Immunol.4(9), 725–736 (2004).
  • Beekes M, McBride PA. The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J.274(3), 588–605 (2007).
  • Safar JG, Lessard P, Tamguney G et al. Transmission and detection of prions in feces. J. Infect. Dis.198(1), 81–89 (2008).
  • Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic wasting disease and potential transmission to humans. Emerg. Infect. Dis.10, 977–984 (2004).
  • Liberski PP, Guiroy DC, Williams ES, Walis A, Budka H. Deposition patterns of disease-associated prion protein in captive mule deer brains with chronic wasting disease. Acta Neuropathol.102(5), 496–500 (2001).
  • Hamir AN, Kunkle RA, Cutlip RC et al. Experimental transmission of chronic wasting disease agent from mule deer to cattle by the intracerebral route. J. Vet. Diagn. Invest.17(3), 276–281 (2005).
  • Hamir AN, Kunkle RA, Cutlip RC, Miller JM, Williams ES, Richt JA. Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation. J. Vet. Diagn. Invest.18(6), 558–565 (2006).
  • Heisey DM, Mickelsen NA, Schneider JR et al. Chronic wasting disease (CWD) susceptibility of several North American rodents that are sympatric with cervid CWD epidemics. J. Virol.84(1), 210–215 (2010).
  • Kong Q, Huang S, Zou W et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J. Neurosci.25(35), 7944–7949 (2005).
  • Tamguney G, Giles K, Bouzamondo-Bernstein E et al. Transmission of elk and deer prions to transgenic mice. J. Virol.80(18), 9104–9114 (2006).
  • Sandberg M, Al-Doujaily H, Sigurdson C et al. Chronic wasting disease prions are not transmissible to transgenic mice over-expressing human prion protein. J. Gen. Virol.91(Pt 10), 2651–2657 (2010).
  • Angers RC, Kang HE, Napier D et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science328(5982), 1154–1158 (2010).
  • Collinge J. Prion strain mutation and selection. Science328, 1111–1112 (2010).
  • Angers RC, Browning SR, Seward TS et al. Prions in skeletal muscles of deer with chronic wasting disease. Science311(5764), 1117 (2006).
  • Mathiason CK, Powers JG, Dahmes SJ et al. Infectious prions in the saliva and blood of deer with chronic wasting disease. Science314(5796), 133–136 (2006).
  • Mathiason CK, Hayes-Klug J, Hays SA et al. B cells and platelets harbor prion infectivity in the blood of deer infected with chronic wasting disease. J. Virol.84(10), 5097–5107 (2010).
  • Race B, Meade-White K, Race R, Chesebro B. Prion infectivity in fat of deer with chronic wasting disease. J. Virol.83(18), 9608–9610 (2009).
  • Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA. Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS ONE4(3), e4848 (2009).
  • Tamguney G, Miller MW, Wolfe LL et al. Asymptomatic deer excrete infectious prions in faeces. Nature461(7263), 529–532 (2009).
  • Angers RC, Seward TS, Napier D et al. Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis.15(5), 696–703 (2009).
  • Joly DO, Samuel MD, Langenberg JA et al. Spatial epidemiology of chronic wasting disease in Wisconsin white-tailed deer. J. Wildl. Dis.42(3), 578–588 (2006).
  • Collinge J, Whitfield J, McKintosh E et al. Kuru in the 21st Century – an acquired human prion disease with very long incubation periods. Lancet367(9528), 2068–2074 (2006).
  • Hamir AN, Kunkle RA, Miller JM, Greenlee JJ, Richt JA. Experimental second passage of chronic wasting disease (CWD[mule deer]) agent to cattle. J. Comp. Pathol.134(1), 63–69 (2006).
  • Denkers ND, Seelig DM, Telling GC, Hoover EA. Aerosol and nasal transmission of chronic wasting disease in cervidized mice. J. Gen. Virol.91(Pt 6), 1651–1658 (2010).
  • Wisniewski T, Sigurdsson EM. Therapeutic approaches for prion and Alzheimer’s diseases. FEBS J.274, 3784–3798 (2007).
  • Jellinger KA. Recent advances in our understanding of neurodegeneration. J. Neural. Transm.116(9), 1111–1162 (2009).
  • Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cell Mol. Life Sci.67(4), 581–600 (2010).
  • Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology69(24), 2197–2204 (2007).
  • Haraguchi T, Terada S, Ishizu H et al. Coexistence of Creutzfeldt–Jakob disease, Lewy body disease, and Alzheimer’s disease pathology: an autopsy case showing typical clinical features of Creutzfeldt–Jakob disease. Neuropathology29(4), 454–459 (2009).
  • Yoshida H, Terada S, Ishizu H et al. An autopsy case of Creutzfeldt–Jakob disease with a V180I mutation of the PrP gene and Alzheimer-type pathology. Neuropathology30(2), 159–164 (2010).
  • Ghetti B, Tagliavini F, Giaccone G et al. Familial Gerstmann–Straussler–Scheinker disease with neurofibrillary tangles. Mol. Neurobiol.8(1), 41–48 (1994).
  • Bugiani O, Giaccone G, Piccardo P, Morbin M, Tagliavini F, Ghetti B. Neuropathology of Gerstmann–Straussler–Scheinker disease. Microsc. Res. Tech.50(1), 10–15 (2000).
  • Wisniewski T, Golabek AA, Kida E, Wisniewski KE, Frangione B. Conformational mimicry in Alzheimer’s disease. Role of apolipoproteins in amyloidogenesis. Am. J. Pathol.147(2), 238–244 (1995).
  • Giasson BI, Forman MS, Higuchi M et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science300(5619), 636–640 (2003).
  • Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci.11(3), 155–159 (2010).
  • Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol.11(4), 301–307 (2010).
  • Pan KM, Baldwin M, Njuyen J et al. Conversion of α-helices into β-sheets features in the formation of scrapie prion poteins. Proc. Natl Acad. Sci. USA90, 10962–10966 (1993).
  • Aucouturier P, Kascsak RJ, Frangione B, Wisniewski T. Biochemical and conformational variability of human prion strains in sporadic Creutzfeldt–Jakob disease. Neurosci. Lett.274, 33–36 (1999).
  • Paramithiotis E, Pinard M, Lawton T et al. A prion protein epitope selective for the pathologically misfolded conformation. Nat. Med.9(7), 893–899 (2003).
  • Hedlin PD, Cashman NR, Li L et al. Design and delivery of a cryptic PrPC epitope for induction of PrPSc-specific antibody responses. Vaccine28(4), 981–988 (2010).
  • Wisniewski T, Prelli F, Scholtzova H et al. Immunotherapy targeting abnormal protein conformation. Alz. Dementia5(4) (Suppl. 1), P113 (2009).
  • Goni F, Prelli F, Ji Y et al. Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer’s disease. PLoS ONE5(10), e13391 (2010).
  • Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature457(7233), 1128–1132 (2009).
  • Gunther EC, Strittmatter SM. β-amyloid oligomers and cellular prion protein in Alzheimer's disease. J. Mol. Med.88, 331–338 (2010).
  • Aguzzi A, O’Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov.9(3), 237–248 (2010).
  • Gimbel DA, Nygaard HB, Coffey ET et al. Memory impairment in transgenic alzheimer mice requires cellular prion protein. J. Neurosci.30(18), 6367–6374 (2010).
  • Chung E, Ji Y, Sun Y et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for Aβ oligomer cognitive cognitive deficits. BMC Neurosci.11, 130 (2010).
  • Calella AM, Farinelli M, Nuvolone M et al. Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol. Med.2(8), 306–314 (2010).
  • Benilova I, De SB. Prion protein in Alzheimer’s pathogenesis: a hot and controversial issue. EMBO Mol. Med.2(8), 289–290 (2010).
  • Kessels HW, Nguyen LN, Nabavi S, Malinow R. The prion protein as a receptor for amyloid-β. Nature466(7308), E3–E4 (2010).
  • Aguzzi A, Heikenwalder M. Prions, cytokines, and chemokines: a meeting in lymphoid organs. Immunity22(2), 145–154 (2005).
  • Aucouturier P, Carp RI, Carnaud C, Wisniewski T. Prion diseases and the immune system. Clin. Immunol.96, 79–85 (2000).
  • Sigurdsson EM, Wisniewski T. Promising developments in prion immunotherapy. Exp. Rev. Vaccines4, 607–610 (2005).
  • Bremer J, Heikenwalder M, Haybaeck J et al. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS ONE4(9), e7160 (2009).
  • Brown KL, Ritchie DL, McBride PA, Bruce ME. Detection of PrP in extraneural tissues. Microsc. Res. Tech.50(1), 40–45 (2000).
  • Mabbott NA, MacPherson GG. Prions and their lethal journey to the brain. Nat. Rev. Microbiol.4(3), 201–211 (2006).
  • Kitamoto T, Muramoto T, Mohri S, Doh-ura K, Tateishi J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol.65(11), 6292–6295 (1991).
  • Aucouturier P, Geissmann F, Damotte D et al. Infected dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest.108, 703–708 (2001).
  • Goni F, Prelli F, Schreiber F et al. High titers of mucosal and systemic anti-PrP antibodies abrogates oral prion infection in mucosal vaccinated mice. Neuroscience153, 679–686 (2008).
  • Wisniewski T, Chabalgoity JA, Goni F. Is vaccination against transmissible spongiform encephalopathies feasible? OIE Sci. Tech. Rev.26(1), 243–251 (2007).
  • Bartz JC, DeJoia C, Tucker T, Kincaid AE, Bessen RA. Extraneural prion neuroinvasion without lymphoreticular system infection. J. Virol.79(18), 11858–11863 (2005).
  • Bessen RA, Martinka S, Kelly J, Gonzalez D. Role of the lymphoreticular system in prion neuroinvasion from the oral and nasal mucosa. J. Virol.83(13), 6435–6445 (2009).
  • Siso S, Gonzalez L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Neurosci. Interdiscip. Perspect. Infect. Dis.2010, 747892 (2010).
  • Muller-Schiffmann A, Korth C. Vaccine approaches to prevent and treat prion infection: progress and challenges. BioDrugs22(1), 45–52 (2008).
  • Wisniewski T, Sigurdsson EM. Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim. Biophys. Acta.1802, 847–859 (2010).
  • Morgan D, Diamond DM, Gottschall PE et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature408, 982–985 (2000).
  • Janus C, Pearson J, McLaurin J et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature408, 979–982 (2000).
  • Sigurdsson EM, Knudsen EL, Asuni A et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-β derivatives. J. Neurosci.24, 6277–6282 (2004).
  • Asuni A, Boutajangout A, Scholtzova H et al. Aβ derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur. J. Neurosci.24, 2530–2542 (2006).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interupted trial. Neurology64, 1553–1562 (2005).
  • Wisniewski T, Frangione B. Immunological and anti-chaperone therapeutic approaches for Alzheimer’s disease. Brain Pathol.15, 72–77 (2005).
  • Wisniewski T. Commentary on ‘Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial’. Nat. Clin. Prac. Neurol.64, 1553–1562 (2005).
  • Hock C, Konietzko U, Straffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron38, 547–554 (2003).
  • Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach for Alzheimer’s disease. Mt. Sinai J. Med.77, 17–31 (2010).
  • Boche D, Donald J, Love S et al. Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Ab42 immunisation in Alzheimer's disease. Acta Neuropathol.120(1), 13–20 (2010).
  • Holmes C, Boche D, Wilkinson D et al. Long-term effects of Ab42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet372(9634), 216–223 (2008).
  • Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol.6(5), 404–416 (2006).
  • Wisniewski T, Konietzko U. amyloid-β immunization for Alzheimer's disease. Lancet Neurol.7(9), 805–811 (2008).
  • Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat. Rev. Neurol.6(2), 108–119 (2010).
  • Manuelidis L. Vaccination with an attenuated Creutzfeldt–Jakob disease strain prevents expression of a virulent agent. Proc. Natl Acad. Sci. USA95(5), 2520–2525 (1998).
  • Heppner FL, Musahl C, Arrighi I et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science294(5540), 178–182 (2001).
  • Enari M, Flechsig E, Weissmann C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA98(16), 9295–9299 (2001).
  • Peretz D, Williamson RA, Kaneko K et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature412(6848), 739–743 (2001).
  • Pankiewicz J, Prelli F, Sy MS et al. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur. J. Neurosci.24, 2635–2647 (2006).
  • Sigurdsson EM, Brown DR, Daniels M et al. Vaccination delays the onset of prion disease in mice. Am. J. Pathol.161, 13–17 (2002).
  • Polymenidou M, Heppner FL, Pellicioli EC et al. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl. Acad. Sci. USA101(Suppl. 2), 14670–14676 (2004).
  • Sigurdsson EM, Sy MS, Li R et al. Anti-PrP antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett.336, 185–187 (2003).
  • White AR, Enever P, Tayebl M et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature422, 80–83 (2003).
  • Mallucci GR, White MD, Farmer M et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron53(3), 325–335 (2007).
  • Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet. J.161(2), 132–164 (2001).
  • Moreno M, Kramer MG, Yim L, Chabalgoity JA. Salmonella as live trojan horse for vaccine development and cancer gene therapy. Curr. Gene Ther.10(1), 56–76 (2010).
  • Tacket CO, Sztein MB, Wasserman SS et al. Phase 2 clinical trial of attenuated Salmonella enterica serovar typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect. Immun.68(3), 1196–1201 (2000).
  • Kirkpatrick BD, McKenzie R, O’Neill JP et al. Evaluation of Salmonella enterica serovar typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine24(2), 116–123 (2006).
  • Villarreal-Ramos B, Manser J, Collins RA, Dougan G, Chatfield SN, Howard CJ. Immune responses in calves immunised orally or subcutaneously with a live Salmonella Typhimurium aro vaccine. Vaccine16(1), 45–54 (1998).
  • Chabalgoity JA, Moreno M, Carol H, Dougan G, Hormaeche CE. A dog-adapted Salmonella Typhimurium strain as a basis for a live oral Echinococcus granulosus vaccine. Vaccine19, 460–469 (2000).
  • Heppner FL, Christ AD, Klein MA et al. Transepithelial prion transport by M cells. Nat. Med.7(9), 976–977 (2001).
  • Goni F, Knudsen EL, Schreiber F et al. Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience133, 413–421 (2005).
  • Sadowski MJ, Pankiewicz J, Prelli F et al. Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol. Dis.34, 267–278 (2009).
  • Song CH, Furuoka H, Kim CL et al. Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J. Gen. Virol.89(Pt 6), 1533–1544 (2008).
  • Solforosi L, Criado JR, McGavern DB et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science303(5663), 1514–1516 (2004).
  • Lefebvre-Roque M, Kremmer E, Gilch S et al. Toxic effects of intracerebral PrP antibody administration during the course of BSE infection in mice. Prion1(3), 198–206 (2007).
  • Campana V, Zentilin L, Mirabile I et al. Development of antibody fragments for immunotherapy of prion diseases. Biochem. J.418(3), 507–515 (2009).
  • Stanker LH, Serban AV, Cleveland E et al. Conformation-dependent high-affinity monoclonal antibodies to prion proteins. J. Immunol.185(1), 729–737 (2010).
  • Scott KA, Daggett V. Folding mechanisms of proteins with high sequence identity but different folds. Biochemistry46(6), 1545–1556 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.