269
Views
95
CrossRef citations to date
0
Altmetric
Review

Cytolytic CD4+ T cells in viral immunity

&
Pages 1453-1463 | Published online: 09 Jan 2014

References

  • Claman HN, Chaperon EA. Immunologic complementation between thymus and marrow cells – a model for the two-cell theory of immunocompetence. Transplant Rev.1, 92–113 (1969).
  • Geha RS, Schneeberger E, Rosen FS, Merler E. Interaction of human thymus-derived and non-thymus-derived lymphocytes in vitro. Induction of proliferation and antibody synthesis in B lymphocytes by a soluble factor released from antigen-stimulated T lymphocytes. J. Exp. Med.138(5), 1230–1247 (1973).
  • Reinherz EL, Schlossman SF. The differentiation and function of human T lymphocytes. Cell19(4), 821–827 (1980).
  • Reinherz EL, Kung PC, Goldstein G, Schlossman SF. Separation of functional subsets of human T cells by a monoclonal antibody. Proc. Natl Acad. Sci. USA76(8), 4061–4065 (1979).
  • Feighery C, Stastny P. HLA-D region-associated determinants serve as targets for human cell-mediated lysis. J. Exp. Med.149(2), 485–494 (1979).
  • Meuer SC, Schlossman SF, Reinherz EL. Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc. Natl Acad. Sci. USA79(14), 4395–4399 (1982).
  • Krensky AM, Reiss CS, Mier JW, Strominger JL, Burakoff SJ. Long-term human cytolytic T-cell lines allospecific for HLA-DR6 antigen are OKT4+. Proc. Natl Acad. Sci. USA79(7), 2365–2369 (1982).
  • Fleischer B. Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in culture. Nature308(5957), 365–367 (1984).
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136(7), 2348–2357 (1986).
  • Douek DC, Brenchley JM, Betts MR et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature417(6884), 95–98 (2002).
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol.28, 445–489 (2010).
  • Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol.21, 713–758 (2003).
  • Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat. Rev. Immunol.10(4), 225–235 (2010).
  • Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity30(3), 324–335 (2009).
  • King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol.26, 741–766 (2008).
  • Yi JS, Du M, Zajac AJ. A vital role for interleukin-21 in the control of a chronic viral infection. Science324(5934), 1572–1576 (2009).
  • Elsaesser H, Sauer K, Brooks DG. IL-21 is required to control chronic viral infection. Science324(5934), 1569–1572 (2009).
  • Chevalier MF, Julg B, Pyo A et al. HIV-1-specific IL-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. DOI:10.1128/JVI.02030-10 (2010) (Epub ahead of print).
  • Suto A, Kashiwakuma D, Kagami S et al. Development and characterization of IL-21-producing CD4+ T cells. J. Exp. Med.205(6), 1369–1379 (2008).
  • Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med.204(8), 1849–1861 (2007).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Jiang H, Chess L. Regulation of immune responses by T cells. N. Engl. J. Med.354(11), 1166–1176 (2006).
  • Wing K, Fehervari Z, Sakaguchi S. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol.18(7), 991–1000 (2006).
  • Omiya R, Buteau C, Kobayashi H, Paya CV, Celis E. Inhibition of EBV-induced lymphoproliferation by CD4+ T cells specific for an MHC class II promiscuous epitope. J. Immunol.169(4), 2172–2179 (2002).
  • Aslan N, Yurdaydin C, Wiegand J et al. Cytotoxic CD4 T cells in viral hepatitis. J. Viral Hepat.13(8), 505–514 (2006).
  • Nemes E, Bertoncelli L, Lugli E et al. Cytotoxic granule release dominates gag-specific CD4+ T-cell response in different phases of HIV infection. AIDS24(7), 947–957 (2010).
  • Jellison ER, Kim S-K, Welsh RM. Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol.174(2), 614–618 (2005).
  • Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, Mills KH. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J. Exp. Med.181(4), 1285–1292 (1995).
  • Graham MB, Braciale VL, Braciale TJ. Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J. Exp. Med.180(4), 1273–1282 (1994).
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol.181(12), 8568–8575 (2008).
  • Landais E, Saulquin X, Scotet E et al. Direct killing of Epstein–Barr virus (EBV)-infected B cells by CD4 T cells directed against the EBV lytic protein BHRF1. Blood103(4), 1408–1416 (2004).
  • Paludan C, Bickham K, Nikiforow S et al. Epstein–Barr nuclear antigen 1-specific CD4+ Th1 cells kill Burkitt’s lymphoma cells. J. Immunol.169(3), 1593–1603 (2002).
  • Klucar P, Barnes PF, Kong Y et al. Characterization of effector functions of human peptide-specific CD4+ T-cell clones for an intracellular pathogen. Hum. Immunol.69(8), 475–483 (2008).
  • Echchakir H, Bagot M, Dorothee G et al. Cutaneous T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J. Invest. Dermatol.115(1), 74–80 (2000).
  • Appay V, Zaunders JJ, Papagno L et al. Characterization of CD4+ CTLs ex vivo. J. Immunol.168(11), 5954–5958 (2002).
  • Gamadia LE, Rentenaar RJ, van Lier RAW, ten Berge IJM. Properties of CD4+ T cells in human cytomegalovirus infection. Hum. Immunol.65(5), 486–492 (2004).
  • Saez-Borderias A, Guma M, Angulo A, Bellosillo B, Pende D, Lopez-Botet M. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur. J. Immunol.36(12), 3198–3206 (2006).
  • Snyder MR, Lucas M, Vivier E, Weyand CM, Goronzy JJ. Selective activation of the c-Jun NH2-terminal protein kinase signaling pathway by stimulatory KIR in the absence of KARAP/DAP12 in CD4+ T cells. J. Exp. Med.197(4), 437–449 (2003).
  • van Bergen J, Thompson A, van der Slik A, Ottenhoff TH, Gussekloo J, Koning F. Phenotypic and functional characterization of CD4 T cells expressing killer Ig-like receptors. J. Immunol.173(11), 6719–6726 (2004).
  • Markiewicz MA, Carayannopoulos LN, Naidenko OV et al. Costimulation through NKG2D enhances murine CD8+ CTL function: similarities and differences between NKG2D and CD28 costimulation. J. Immunol.175(5), 2825–2833 (2005).
  • Roberts AI, Lee L, Schwarz E et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J. Immunol.167(10), 5527–5530 (2001).
  • Snyder MR, Weyand CM, Goronzy JJ. The double life of NK receptors: stimulation or co-stimulation? Trends Immunol.25(1), 25–32 (2004).
  • van de Berg PJ, van Leeuwen EM, ten Berge IJ, van Lier R. Cytotoxic human CD4+ T cells. Curr. Opin. Immunol.20(3), 339–343 (2008).
  • Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood104(9), 2840–2848 (2004).
  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity21(4), 589–601 (2004).
  • Janssens W, Carlier V, Wu B, VanderElst L, Jacquemin MG, Saint-Remy J-MR. CD4+CD25+ T cells lyse antigen-presenting B cells by Fas–Fas ligand interaction in an epitope-specific manner. J. Immunol.171(9), 4604–4612 (2003).
  • Boissonnas A, Scholer-Dahirel A, Simon-Blancal V et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity32(2), 266–278 (2010).
  • Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat. Rev. Mol. Cell Biol.2(12), 917–924 (2001).
  • Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol.2(10), 735–747 (2002).
  • Stalder T, Hahn S, Erb P. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J. Immunol.152(3), 1127–1133 (1994).
  • Zajac AJ, Quinn DG, Cohen PL, Frelinger JA. Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection. Proc. Natl Acad. Sci. USA93(25), 14730–14735 (1996).
  • Stuller KA, Cush SS, Flano E. Persistent herpesvirus infection induces a CD4 T cell response containing functionally distinct effector populations. J. Immunol.184(7), 3850–3856 (2010).
  • Casazza JP, Betts MR, Price DA et al. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med.203(13), 2865–2877 (2006).
  • Stuller KA, Flano E. CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J. Virol.83(9), 4700–4703 (2009).
  • Sun Q, Burton RL, Lucas KG. Cytokine production and cytolytic mechanism of CD4+ cytotoxic T lymphocytes in ex vivo expanded therapeutic Epstein–Barr virus-specific T-cell cultures. Blood99(9), 3302–3309 (2002).
  • Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, Boom WH. CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J. Immunol.167(5), 2734–2742 (2001).
  • Lum JJ, Pilon AA, Sanchez-Dardon J et al. Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2l. J. Virol.75(22), 11128–11136 (2001).
  • Sedger LM, Shows DM, Blanton RA et al. IFN-γ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol.163(2), 920–926 (1999).
  • Kaplan MJ, Ray D, Mo RR, Yung RL, Richardson BC. TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J. Immunol.164(6), 2897–2904 (2000).
  • Kayagaki N, Yamaguchi N, Nakayama M et al. Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J. Immunol.162(5), 2639–2647 (1999).
  • Li X, McKinstry KK, Swain SL, Dalton DK. IFN-γ acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J. Immunol.179(2), 939–949 (2007).
  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-κB. Science274(5288), 787–789 (1996).
  • Wang L, Du F, Wang X. TNF-α induces two distinct caspase-8 activation pathways. Cell133(4), 693–703 (2008).
  • Kim PK, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int. Immunopharmacol.1(8), 1421–1441 (2001).
  • Graubert TA, DiPersio JF, Russell JH, Ley TJ. Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J. Clin. Invest.100(4), 904–911 (1997).
  • Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol.10(5), 581–587 (1998).
  • Yanai F, Ishii E, Kojima K et al. Essential roles of perforin in antigen-specific cytotoxicity mediated by human CD4+ T lymphocytes: analysis using the combination of hereditary perforin-deficient effector cells and Fas-deficient target cells. J. Immunol.170(4), 2205–2213 (2003).
  • Brown DM, Kamperschroer C, Dilzer AM, Roberts DM, Swain SL. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell. Immunol.257(1–2), 69–79 (2009).
  • Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol.177(5), 2888–2898 (2006).
  • Intlekofer AM, Takemoto N, Wherry EJ et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol.6(12), 1236–1244 (2005).
  • Hamilton SE, Jameson SC. CD8+ T cell differentiation: choosing a path through T-bet. Immunity27(2), 180–182 (2007).
  • Appay V, Bosio A, Lokan S et al. Sensitive gene expression profiling of human T cell subsets reveals parallel post-thymic differentiation for CD4+ and CD8+ lineages. J. Immunol.179(11), 7406–7414 (2007).
  • Suto A, Wurster AL, Reiner SL, Grusby MJ. IL-21 inhibits IFN-γ production in developing Th1 cells through the repression of Eomesodermin expression. J. Immunol.177(6), 3721–3727 (2006).
  • Pearce EL, Mullen AC, Martins GA et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science302(5647), 1041–1043 (2003).
  • Hidalgo LG, Einecke G, Allanach K, Halloran PF. The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4+ CTL, CD8+ CTL and NK cells. Am. J. Transplant.8(3), 627–636 (2008).
  • Cruz-Guilloty F, Pipkin ME, Djuretic IM et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med.206(1), 51–59 (2009).
  • Kohu K, Ohmori H, Wong WF et al. The Runx3 transcription factor augments Th1 and down-modulates Th2 phenotypes by interacting with and attenuating GATA3. J. Immunol.183(12), 7817–7824 (2009).
  • Yagi R, Junttila IS, Wei G et al. The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-γ. Immunity32(4), 507–517 (2010).
  • Brown DM. Cytolytic CD4 cells: direct mediators in infectious disease and malignancy. Cell Immunol.262(2), 89–95 (2010).
  • Janas ML, Groves P, Kienzle N, Kelso A. IL-2 regulates perforin and granzyme gene expression in CD8+ T cells independently of its effects on survival and proliferation. J. Immunol.175(12), 8003–8010 (2005).
  • Zhang J, Scordi I, Smyth MJ, Lichtenheld MG. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J. Exp. Med.190(9), 1297–1308 (1999).
  • Ye W, Young JD, Liu CC. Interleukin-15 induces the expression of mRNAs of cytolytic mediators and augments cytotoxic activities in primary murine lymphocytes. Cell Immunol.174(1), 54–62 (1996).
  • White L, Krishnan S, Strbo N et al. Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood109(9), 3873–3880 (2007).
  • Ebert EC. Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology127(2), 206–215 (2009).
  • Picker LJ, Reed-Inderbitzin EF, Hagen SI et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J. Clin. Invest.116(6), 1514–1524 (2006).
  • Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature434(7037), 1093–1097 (2005).
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med.361(23), 2209–2220 (2009).
  • Pitcher CJ, Quittner C, Peterson DM et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat. Med.5(5), 518–525 (1999).
  • Rosenberg ES, Billingsley JM, Caliendo AM et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science278(5342), 1447–1450 (1997).
  • Sethi KK, Naher H, Stroehmann I. Phenotypic heterogeneity of cerebrospinal fluid-derived HIV-specific and HLA-restricted cytotoxic T-cell clones. Nature335(6186), 178–181 (1988).
  • Hammond SA, Bollinger RC, Stanhope PE et al. Comparative clonal analysis of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ and CD8+ cytolytic T lymphocytes isolated from seronegative humans immunized with candidate HIV-1 vaccines. J. Exp. Med.176(6), 1531–1542 (1992).
  • Stanhope PE, Clements ML, Siliciano RF. Human CD4+ cytolytic T lymphocyte responses to a human immunodeficiency virus type 1 gp160 subunit vaccine. J. Infect. Dis.168(1), 92–100 (1993).
  • Stanhope PE, Liu AY, Pavlat W, Pitha PM, Clements ML, Siliciano RF. An HIV-1 envelope protein vaccine elicits a functionally complex human CD4+ T cell response that includes cytolytic T lymphocytes. J. Immunol.150(10), 4672–4686 (1993).
  • Miskovsky EP, Liu AY, Pavlat W et al. Studies of the mechanism of cytolysis by HIV-1-specific CD4+ human CTL clones induced by candidate AIDS vaccines. J. Immunol.153(6), 2787–2799 (1994).
  • Appay V. The physiological role of cytotoxic CD4+ T-cells: the holy grail? Clin. Exp. Immunol.138(1), 10–13 (2004).
  • Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ. Cytotoxic-T-cell responses, viral load, and disease progression in early human immunodeficiency virus type 1 infection. N. Engl. J. Med.337(18), 1267–1274 (1997).
  • Norris PJ, Moffett HF, Yang OO et al. Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4+ T cells. J. Virol.78(16), 8844–8851 (2004).
  • Kundu SK, Merigan TC. Equivalent recognition of HIV proteins, Env, Gag and Pol, by CD4+ and CD8+ cytotoxic T-lymphocytes. AIDS6(7), 643–649 (1992).
  • Heinkelein M, Euler-Konig I, Klinker H, Ruckle-Lanz H, Jassoy C. Lysis of human immunodeficiency virus type 1 antigen-expressing cells by CD4 and CD8 T cells ex vivo. J. Infect. Dis.174(1), 209–213 (1996).
  • Chea S, Dale CJ, De Rose R, Ramshaw IA, Kent SJ. Enhanced cellular immunity in macaques following a novel peptide immunotherapy. J. Virol.79(6), 3748–3757 (2005).
  • Sacha JB, Giraldo-Vela JP, Buechler MB et al. Gag- and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection. Proc. Natl Acad. Sci. USA106(24), 9791–9796 (2009).
  • Zheng N, Fujiwara M, Ueno T, Oka S, Takiguchi M. Strong ability of Nef-specific CD4+ cytotoxic T cells to suppress human immunodeficiency virus type 1 (HIV-1) replication in HIV-1-infected CD4+ T cells and macrophages. J. Virol.83(15), 7668–7677 (2009).
  • Streeck H, Li B, Poon AF et al. Immune-driven recombination and loss of control after HIV superinfection. J. Exp. Med.205(8), 1789–1796 (2008).
  • Kuroda MJ. Macrophages: do they impact AIDS progression more than CD4 T cells? J. Leukoc. Biol.87(4), 569–573 (2010).
  • Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity26(1), 79–92 (2007).
  • Goulder PJ, Phillips RE, Colbert RA et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med.3(2), 212–217 (1997).
  • Ciurea A, Hunziker L, Martinic MM, Oxenius A, Hengartner H, Zinkernagel RM. CD4+ T-cell-epitope escape mutant virus selected in vivo. Nat. Med.7(7), 795–800 (2001).
  • Eckels DD, Zhou H, Bian TH, Wang H. Identification of antigenic escape variants in an immunodominant epitope of hepatitis C virus. Int. Immunol.11(4), 577–583 (1999).
  • Rychert J, Saindon S, Placek S, Daskalakis D, Rosenberg E. Sequence variation occurs in CD4 epitopes during early HIV infection. J. Acquir. Immune Defic. Syndr.46(3), 261–267 (2007).
  • Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med.2(3), 338–342 (1996).
  • Benlahrech A, Harris J, Meiser A et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc. Natl Acad. Sci. USA106(47), 19940–19945 (2009).
  • Mattapallil JJ, Douek DC, Buckler-White A et al. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J. Exp. Med.203(6), 1533–1541 (2006).
  • Taylor GS, Haigh TA, Gudgeon NH et al. Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J. Virol.78(2), 768–778 (2004).
  • Ribeiro SP, Rosa DS, Fonseca SG et al. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules. PLoS ONE5(6), e11072 (2010).
  • Rodriguez F, Harkins S, Redwine JM, de Pereda JM, Whitton JL. CD4+ T cells induced by a DNA vaccine: immunological consequences of epitope-specific lysosomal targeting. J. Virol.75(21), 10421–10430 (2001).
  • Moingeon P, Haensler J, Lindberg A. Towards the rational design of Th1 adjuvants. Vaccine19(31), 4363–4372 (2001).
  • Hildeman D, Yanez D, Pederson K, Havighurst T, Muller D. Vaccination against persistent viral infection exacerbates CD4+ T-cell-mediated immunopathological disease. J. Virol.71(12), 9672–9678 (1997).
  • Fu Z, Cannon MJ. Functional analysis of the CD4+ T-cell response to Epstein–Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression. J. Virol.74(14), 6675–6679 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.