462
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Determinants of cancer immunotherapy success

&
Pages 1363-1366 | Published online: 09 Jan 2014

References

  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006).
  • Spänkuch B, Strebhardt K. Combinatorial application of nucleic acid-based agents targeting protein kinases for cancer treatment. Curr. Pharm. Des.14(11), 1098–1112 (2008).
  • Wang E, Worschech A, Marincola FM. The immunologic constant of rejection. Trends Immunol.29(6), 256–262 (2008).
  • Eggermont AM. Therapeutic vaccines in solid tumors: can they be harmful? Eur. J. Cancer45(12), 2087–2090 (2009).
  • Begley J, Ribas A. Targeted therapies to improve tumor immunotherapy. Clin. Cancer Res.14(14), 4385–4391 (2008).
  • Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D et al. Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J. Exp. Med.206(4), 849–866 (2009).
  • Karanikas V, Zamanakou M, Soukou F, Kerenidi T, Gourgoulianis KI, Germenis AE. Naturally occurring tumor-specific CD8+ T-cell precursors in individuals with and without cancer. Immunol. Cell Biol.88(5), 575–585 (2010).
  • Coulie PG, Connerotte T. Human tumor-specific T lymphocytes: does function matter more than number? Curr. Opin. Immunol.17(3), 320–325 (2005).
  • Pawelec G, Koch S, Griesemann H, Rehbein A, Hähnel K, Gouttefangeas C. Immunosenescence, suppression and tumor progression. Cancer Immunol. Immunother.55(8), 981–986 (2006).
  • Bricard G, Bouzourene H, Martinet O et al. Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J. Immunol.174(3), 1709–1716 (2005).
  • Filaci G, Fravega M, Setti M et al. Frequency of telomerase-specific CD8+ T lymphocytes in patients with cancer. Blood107(4), 1505–1512 (2006).
  • Sato Y, Fujiwara T, Mine T et al. Immunological evaluation of personalized peptide vaccination in combination with a 5-fluorouracil derivative (TS-1) for advanced gastric or colorectal carcinoma patients. Cancer Sci.98(7), 1113–1119 (2007).
  • Mine T, Gouhara R, Hida N et al. Immunological evaluation of CTL precursor-oriented vaccines for advanced lung cancer patients. Cancer Sci.94(6), 548–556 (2003).
  • Tanaka S, Harada M, Mine T et al. Peptide vaccination for patients with melanoma and other types of cancer based on pre-existing peptide-specific ctotoxic T-lymphocyte precursors in the periphery. J. Immunother.26(4), 357–366 (2003).
  • Karanikas V, Lurquin C, Colau D et al. Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J. Immunol.171(9), 4898–4904 (2003).
  • Ichiki Y, Hanagiri T, Takenoyama M et al. Tumor specific expression of survivin-2B in lung cancer as a novel target of immunotherapy. Lung Cancer48(2), 281–289 (2005).
  • Britten CM, Gouttefangeas C, Welters MJ et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol. Immunother.57(3), 289–302 (2007).
  • Karanikas V, Tsochas S, Boukas K et al. Co-expression patterns of tumor-associated antigen genes by non-small cell lung carcinomas: implications for immunotherapy. Cancer Biol. Ther.7(3), 345–352 (2008).
  • Karanikas V, Soukou F, Kalala F et al. Baseline levels of CD8+ T cells against survivin and survivin-2B in the blood of lung cancer patients and cancer-free individuals. Clin. Immunol.129(2), 230–240 (2008).
  • Badovinac VP, Haring JS, Harty JT. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity26(6), 827–841 (2007).
  • Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrançois L. Initial T cell frequency dictates memory CD8+ T cell lineage commitment, Nat. Immunol.6(8), 793–799 (2005).
  • Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest.113(1), 8–13 (2004).
  • Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol.30(7), 301–305 (2009).
  • Iancu EM, Speiser DE, Rufer N. Assessing ageing of individual T lymphocytes: mission impossible? Mech. Ageing Dev.129(1–2), 67–78 (2008).
  • Rufer N, Zippelius A, Batard P et al.Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood102(5), 1779–1787 (2003).
  • Cao W, Jamieson BD, Hultin LE, Hultin PM, Effros RB, Detels R. Premature aging of T cells is associated with faster HIV-1 disease progression. J. Acquir. Immune Defic. Syndr.50(2), 137–147 (2009).
  • Aleksic M, Dushek O, Zhang H et al. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity32(2), 163–174 (2010).
  • Maile R, Siler CA, Kerry SE, Midkiff KE, Collins EJ, Frelinger JA. Peripheral ‘CD8 tuning’ dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J. Immunol.174(2), 619–627 (2005).
  • Kroger CJ, Alexander-Miller MA. Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter. Immunology122(2), 167–178 (2007).
  • Pittet MJ, Gati A, Le Gal FA et al. Ex vivo characterization of allo-MHC-restricted T cells specific for a single MHC–peptide complex. J. Immunol.176(4), 2330–2336 (2006).
  • Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat. Immunol.5(2), 133–139 (2004).
  • Haynes L, Maue AC. Effects of aging on T cell function. Curr. Opin. Immunol.21(4), 414–417 (2009).
  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med.205(3), 711–723 (2008).
  • Nikolich-Žugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol.8(7), 512–522 (2008).
  • Gruver AL, Hudson LL, Sempowski GD. Immunosenescence and ageing. J. Pathol.211(2), 144–156 (2007).
  • Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A. Is immunosenescence infectious? Trends Immunol.25(8), 406–410 (2004).
  • Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun. Ageing.7, 7 (2010).
  • Koch S, Solana R, Dela Rosa O, Pawelec G. Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech. Ageing Dev.127(6), 538–543 (2006).
  • Walter S, Bioley G, Bühring HJ et al. High frequencies of functionally impaired cytokeratin 18-specific CD8+ T cells in healthy HLA-A2+ donors. Eur. J. Immunol.35(10), 2876–2885 (2005).
  • Germenis AE, Karanikas V. Cord blood as a source of non-senescent lymphocytes for tumor immunotherapy. J. Reprod. Immunol.85(1), 47–50 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.