660
Views
89
CrossRef citations to date
0
Altmetric
Review

Combination adjuvants: the next generation of adjuvants?

, , , , , , & show all
Pages 95-107 | Published online: 09 Jan 2014

References

  • Huang DB, Wu JJ, Tyring SK. A review of licensed viral vaccines, some of their safety concerns, and the advances in the development of investigational viral vaccines. J. Infect.49(3), 179–209 (2004).
  • Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B. Persistent viral infections and immune aging. Ageing Res. Rev. DOI: 10.1016/j.arr.2010.08.003 (2010) (Epub ahead of print).
  • Mosca F, Tritto E, Muzzi A et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA105(30), 10501–10506 (2008).
  • Ramon G. Ann. Inst. Pasteur38, 1 (1924).
  • Singh M, O’Hagan DT. Recent advances in veterinary vaccine adjuvants. Int. J. Parasitol.33(5–6), 469–478 (2003).
  • Giannini SL, Hanon E, Moris P et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine24(33–34), 5937–5949 (2006).
  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J. Pharm. Sci.98(4), 1278–1316 (2009).
  • Kool M, Soullie T, van Nimwegen M et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med.205(4), 869–882 (2008).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453(7198), 1122–1126 (2008).
  • Franchi L, Nunez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol.38(8), 2085–2089 (2008).
  • Li H, Willingham SB, Ting JP, Re F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol.181(1), 17–21 (2008).
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol.9(4), 287–293 (2009).
  • Schultze V, D’Agosto V, Wack A, Novicki D, Zorn J, Hennig R. Safety of MF59 adjuvant. Vaccine26(26), 3209–3222 (2008).
  • Leroux-Roels I, Leroux-Roels G. Current status and progress of prepandemic and pandemic influenza vaccine development. Expert Rev. Vaccines8(4), 401–423 (2009).
  • Seubert A, Monaci E, Pizza M, O’Hagan DT, Wack A. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J. Immunol.180(8), 5402–5412 (2008).
  • Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine22(15–16), 1903–1913 (2004).
  • Owais M, Gupta CM. Liposome-mediated cytosolic delivery of macromolecules and its possible use in vaccine development. Eur. J. Biochem.267(13), 3946–3956 (2000).
  • Stewart VA, McGrath SM, Walsh DS et al. Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine24(42–43), 6483–6492 (2006).
  • Joseph A, Itskovitz-Cooper N, Samira S et al. A new intranasal influenza vaccine based on a novel polycationic lipid – ceramide carbamoyl-spermine (CCS) I. Immunogenicity and efficacy studies in mice. Vaccine24(18), 3990–4006 (2006).
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin. Cancer Res.13(15 Pt 2), S4652–S4654 (2007).
  • Lovgren K, Morein B. The requirement of lipids for the formation of immunostimulating complexes (iscoms). Biotechnol. Appl. Biochem.10(2), 161–172 (1988).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc. Natl Acad. Sci. USA101(29), 10697–10702 (2004).
  • Smith RE, Donachie AM, Grdic D, Lycke N, Mowat AM. Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J. Immunol.162(9), 5536–5546 (1999).
  • Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature375(6527), 151–155 (1995).
  • van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol.27(1), 49–55 (2006).
  • Querec T, Bennouna S, Alkan S et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med.203(2), 413–424 (2006).
  • Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, Klinman DM. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol.162(4), 2291–2298 (1999).
  • Miyagi K, Kawakami K, Kinjo Y et al. CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-g production by CD4+ T cells. Clin. Exp. Immunol.140(2), 220–229 (2005).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Heckelsmiller K, Beck S, Rall K et al. Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur. J. Immunol.32(11), 3235–3245 (2002).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev.5(6), 471–484 (2006).
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev.61(3), 195–204 (2009).
  • Lemesre JL, Holzmuller P, Cavaleyra M, Goncalves RB, Hottin G, Papierok G. Protection against experimental visceral leishmaniasis infection in dogs immunized with purified excreted secreted antigens of Leishmania infantum promastigotes. Vaccine23(22), 2825–2840 (2005).
  • Cheng E, Cardenas-Freytag L, Clements JD. The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine18(1–2), 38–49 (1999).
  • Xu-Amano J, Jackson RJ, Fujihashi K, Kiyono H, Staats HF, McGhee JR. Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin. Vaccine12(10), 903–911 (1994).
  • Katz JM, Lu X, Young SA, Galphin JC. Adjuvant activity of the heat-labile enterotoxin from enterotoxigenic Escherichia coli for oral administration of inactivated influenza virus vaccine. J. Infect. Dis.175(2), 352–363 (1997).
  • Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine25(19), 3752–3762 (2007).
  • Lynch JM, Briles DE, Metzger DW. Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. Infect. Immun.71(8), 4780–4788 (2003).
  • Didierlaurent AM, Morel S, Lockman L et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol.183(10), 6186–6197 (2009).
  • Bagchi A, Herrup EA, Warren HS et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol.178(2), 1164–1171 (2007).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8), 769–776 (2005).
  • Roelofs MF, Joosten LA, Abdollahi-Roodsaz S et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum.52(8), 2313–2322 (2005).
  • Sato S, Nomura F, Kawai T et al. Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J. Immunol.165(12), 7096–7101 (2000).
  • Grossmann C, Tenbusch M, Nchinda G et al. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic Toll-like receptor ligands. BMC Immunol.10, 43 (2009).
  • Zhu Q, Egelston C, Gagnon S et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest.120(2), 607–616 (2010).
  • Mutwiri G, van Drunen Littel-van den Hurk S, Babiuk LA. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv. Drug Deliv. Rev.61(3), 226–232 (2009).
  • Griebel PJ, Brownlie R, Manuja A et al. Bovine Toll-like receptor 9: a comparative analysis of molecular structure, function and expression. Vet. Immunol. Immunopathol.108(1–2), 11–16 (2005).
  • Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23, 275–306 (2005).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374(6522), 546–549 (1995).
  • Yi AK, Peckham DW, Ashman RF, Krieg AM. CpG DNA rescues B cells from apoptosis by activating NFκB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int. Immunol.11(12), 2015–2024 (1999).
  • Davis HL, Weeratna R, Waldschmidt TJ et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol.160(2), 870–876 (1998).
  • Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur. J. Immunol.30(12), 3591–3597 (2000).
  • Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med.186(10), 1623–1631 (1997).
  • Ioannou XP, Griebel P, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides. J. Virol.76(18), 9002–9010 (2002).
  • Oumouna M, Mapletoft J, Karvonen B, Babiuk LA, van Drunen Littel-van den Hurk S. Formulation with CpG oligodeoxynucleotides prevents induction of pulmonary immunopathology following priming with formalin-inactivated or commercial killed bovine respiratory syncytial virus vaccine. J. Virol.79, 2024–2032 (2005).
  • Roman M, Martin-Orozco E, Goodman JS et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat. Med.3(8), 849–854 (1997).
  • Weeratna RD, McCluskie MJ, Xu Y, Davis HL. CpG DNA induces stronger immune responses with less toxicity than other adjuvants. Vaccine18(17), 1755–1762 (2000).
  • Krieg AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr. Opin. Mol. Ther.3(1), 15–24 (2001).
  • Ioannou XP, Gomis SM, Karvonen B, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine21(1–2), 127–137 (2002).
  • Ioannou XP, Griebel P, Mena A et al. Safety of CpG oligodeoxynucleotides in veterinary species. Antisense Nucleic Acid Drug Dev.13(3), 157–167 (2003).
  • Rankin R, Pontarollo R, Gomis S et al. CpG-containing oligodeoxynucleotides augment and switch the immune responses of cattle to bovine herpesvirus-1 glycoprotein D. Vaccine20(23–24), 3014–3022 (2002).
  • Davis HL, Suparto, II, Weeratna RR et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine18(18), 1920–1924 (2000).
  • Cooper CL, Davis HL, Morris ML et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol.24(6), 693–701 (2004).
  • Halperin SA, Van Nest G, Smith B, Abtahi S, Whiley H, Eiden JJ. A Phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine21(19–20), 2461–2467 (2003).
  • Cooper CL, Davis HL, Morris ML et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine22(23–24), 3136–3143 (2004).
  • Simons FE, Shikishima Y, Van Nest G, Eiden JJ, HayGlass KT. Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J. Allergy Clin. Immunol.113(6), 1144–1151 (2004).
  • Kuball J, de Boer K, Wagner E et al. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol. Immunother. DOI: 10.1007/s00262-010-0929-7 (2010) (Epub ahead of print).
  • Ganz T. Defensins and host defense. Science286(5439), 420–421 (1999).
  • Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol.110(6), 823–831 (2002).
  • Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J. Immunol.174(10), 6257–6265 (2005).
  • Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol.17(4), 359–365 (2005).
  • De Y, Chen Q, Schmidt AP et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med.192(7), 1069–1074 (2000).
  • Niyonsaba F, Iwabuchi K, Someya A et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology106(1), 20–26 (2002).
  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol.169(7), 3883–3891 (2002).
  • Hsu CH, Chen C, Jou ML et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res.33(13), 4053–4064 (2005).
  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem.267(7), 4292–4295 (1992).
  • Fritz JH, Brunner S, Birnstiel ML et al. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine22(25–26), 3274–3284 (2004).
  • Schellack C, Prinz K, Egyed A et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine24(26), 5461–5472 (2006).
  • Agger EM, Rosenkrands I, Olsen AW et al. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine24(26), 5452–5460 (2006).
  • Riedl K, Riedl R, von Gabain A, Nagy E, Lingnau K. The novel adjuvant IC31 strongly improves influenza vaccine-specific cellular and humoral immune responses in young adult and aged mice. Vaccine26(27–28), 3461–3468 (2008).
  • Kamath AT, Rochat AF, Valenti MP et al. Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant. PloS One3(11), e3683 (2008).
  • Olafsdottir TA, Lingnau K, Nagy E, Jonsdottir I. IC31, a two-component novel adjuvant mixed with a conjugate vaccine enhances protective immunity against pneumococcal disease in neonatal mice. Scand. J. Immunol.69(3), 194–202 (2009).
  • Bowdish DM, Davidson DJ, Scott MG, Hancock RE. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother.49(5), 1727–1732 (2005).
  • Kovacs-Nolan J, Mapletoft JW, Latimer L, Babiuk LA, Hurk SD. CpG oligonucleotide, host defense peptide and polyphosphazene act synergistically, inducing long-lasting, balanced immune responses in cattle. Vaccine27(14), 2048–2054 (2009).
  • Kovacs-Nolan J, Mapletoft JW, Lawman Z, Babiuk LA, van Drunen Littel-van den Hurk S. Formulation of bovine respiratory syncytial virus fusion protein with CpG oligodeoxynucleotide, cationic host defence peptide and polyphosphazene enhances humoral and cellular responses and induces a protective type 1 immune response in mice. J. Gen. Virol.90(Pt 8), 1892–1905 (2009).
  • Kovacs-Nolan J, Latimer L, Landi A et al. The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine27(14), 2055–2064 (2009).
  • Hilpert K, Elliott MR, Volkmer-Engert R et al. Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem. Biol.13(10), 1101–1107 (2006).
  • Kindrachuk J, Jenssen H, Elliott M et al. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine27(34), 4662–4671 (2009).
  • McNeal MM, Rae MN, Ward RL. Effects of different adjuvants on rotavirus antibody responses and protection in mice following intramuscular immunization with inactivated rotavirus. Vaccine17(11–12), 1573–1580 (1999).
  • Payne LG, Jenkins SA, Woods AL et al. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine16(1), 92–98 (1998).
  • Wu JY, Wade WF, Taylor RK. Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect. Immun.69(12), 7695–7702 (2001).
  • Mutwiri G, Benjamin P, Soita H, Babiuk LA. Co-administration of polyphosphazenes with CpG oligodeoxynucleotides strongly enhances immune responses in mice immunized with hepatitis B virus surface antigen. Vaccine26(22), 2680–2688 (2008).
  • Mutwiri G, Benjamin P, Soita H et al. Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine25(7), 1204–1213 (2007).
  • Mapletoft JW, Oumouna M, Kovacs-Nolan J et al. Intranasal immunization of mice with a formalin-inactivated bovine respiratory syncytial virus vaccine co-formulated with CpG oligodeoxynucleotides and polyphosphazenes results in enhanced protection. J. Gen. Virol.89(Pt 1), 250–260 (2008).
  • Jiang W, Baker HJ, Smith BF. Mucosal immunization with helicobacter, CpG DNA, and cholera toxin is protective. Infect. Immun.71(1), 40–46 (2003).
  • Cheng C, Bettahi I, Cruz-Fisher MI et al. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine27(44), 6239–6246 (2009).
  • Albu DI, Jones-Trower A, Woron AM, Stellrecht K, Broder CC, Metzger DW. Intranasal vaccination using interleukin-12 and cholera toxin subunit B as adjuvants to enhance mucosal and systemic immunity to human immunodeficiency virus type 1 glycoproteins. J. Virol.77(10), 5589–5597 (2003).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet366(9502), 2012–2018 (2005).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet364(9443), 1411–1420 (2004).
  • Garcon N, Chomez P, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6(5), 723–739 (2007).
  • Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv. Exp. Med. Biol.667, 111–123 (2010).
  • Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem.278(8), 5509–5512 (2003).
  • Ellouz F, Adam A, Ciorbaru R, Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun.59(4), 1317–1325 (1974).
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Modulating the adjuvanticity of alum by co-administration of muramyl di-peptide (MDP) or Quil-A. Vaccine24(8), 1081–1086 (2006).
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Comparative immunomodulatory properties of a chitosan–MDP adjuvant combination following intranasal or intramuscular immunisation. Vaccine23(16), 1923–1930 (2005).
  • Jain V, Vyas SP, Kohli DV. Well-defined and potent liposomal hepatitis B vaccines adjuvanted with lipophilic MDP derivatives. Nanomedicine5(3), 334–344 (2009).
  • Lindenstrom T, Agger EM, Korsholm KS et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol.182(12), 8047–8055 (2009).
  • Chianese-Bullock KA, Pressley J, Garbee C et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J. Immunol.174(5), 3080–3086 (2005).
  • Toubaji A, Hill S, Terabe M et al. The combination of GM-CSF and IL-2 as local adjuvant shows synergy in enhancing peptide vaccines and provides long term tumor protection. Vaccine25(31), 5882–5891 (2007).
  • Song S, Liu C, Wang J et al. Vaccination with combination of Fit3L and RANTES in a DNA prime-protein boost regimen elicits strong cell-mediated immunity and antitumor effect. Vaccine27(7), 1111–1118 (2009).
  • Sharp FA, Ruane D, Claass B et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA106(3), 870–875 (2009).
  • Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun.59(9), 2978–2986 (1991).
  • O’Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine11(9), 965–969 (1993).
  • O’Hagan DT, Jeffery H, Roberts MJ, McGee JP, Davis SS. Controlled release microparticles for vaccine development. Vaccine9(10), 768–771 (1991).
  • O’Hagan DT, Rahman D, McGee JP et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology73(2), 239–242 (1991).
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control Release85(1–3), 247–262 (2002).
  • O ’Hagan DT, Singh M, Kazzaz J et al. Synergistic adjuvant activity of eimmunostimulatory DNA and oil/water emulsions for immunization with HIV p55 gag antigen. Vaccine20(27–28), 3389–3398 (2002).
  • Cleland JL, Barron L, Daugherty A et al. Development of a single-shot subunit vaccine for HIV-1. 3. Effect of adjuvant and immunization schedule on the duration of the humoral immune response to recombinant MN gp120. J. Pharm. Sci.85(12), 1350–1357 (1997).
  • Tabata Y, Ikada Y. Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microspheres. J. Pharm. Pharmacol.39(9), 698–704 (1987).
  • Andrianov AK, Chen J, Payne LG. Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions. Biomaterials19(1–3), 109–115 (1998).
  • Andrianov AK, Marin A, Chen J. Synthesis, properties, and biological activity of poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromolecules7(1), 394–399 (2006).
  • Eng NF, Garlapati S, Gerdts V, Potter A, Babiuk LA, Mutwiri GK. The potential of polyphosphazenes for delivery of vaccine antigens and immunotherapeutic agents. Curr. Drug Deliv.7(1), 13–20 (2010).
  • Wack A, Baudner BC, Hilbert AK et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine26(4), 552–561 (2008).
  • Mitchell LA, Joseph A, Kedar E, Barenholz Y, Galun E. Mucosal immunization against hepatitis A: antibody responses are enhanced by co-administration of synthetic oligodeoxynucleotides and a novel cationic lipid. Vaccine24(25), 5300–5310 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.