103
Views
13
CrossRef citations to date
0
Altmetric
Review

The challenge of assessing infant vaccine responses in resource-poor settings

, , &
Pages 665-674 | Published online: 09 Jan 2014

References

  • Senior K. Childhood vaccination and progress towards MDG4. Lancet Infect. Dis.9(12), 730 (2009).
  • Ehreth J. The global value of vaccination. Vaccine21(7–8), 596–600 (2003).
  • Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev.7(5), 379–390 (2007).
  • Davila S, Hibberd ML, Hari Dass R et al. Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet.4(10), e1000218 (2008).
  • Uehori J, Matsumoto M, Tsuji S et al. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette–Guérin peptidoglycan. Infect. Immun.71(8), 4238–4249 (2003).
  • Watkins ML, Semple PL, Abel B, Hanekom WA, Kaplan G, Ress SR. Exposure of cord blood to Mycobacterium bovis BCG induces an innate response but not a T-cell cytokine response. Clin. Vaccine Immunol.15(11), 1666–1673 (2008).
  • Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-α induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J. Immunol.173(7), 4627–4634 (2004).
  • Krumbiegel D, Zepp F, Meyer CU. Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells. Hum. Immunol.68(10), 813–822 (2007).
  • von Bernuth H, Picard C, Jin Z et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science321(5889), 691–696 (2008).
  • Ku CL, Picard C, Erdos M et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet.44(1), 16–23 (2007).
  • Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R. Role of MyD88 in diminished tumor necrosis factor α production by newborn mononuclear cells in response to lipopolysaccharide. Infect. Immun.72(3), 1223–1229 (2004).
  • Goriely S, Vincart B, Stordeur P et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J. Immunol.166(3), 2141–2146 (2001).
  • Belderbos ME, van Bleek GM, Levy O et al. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol.133(2), 228–237 (2009).
  • Levy O, Suter EE, Miller RL, Wessels MR. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood108(4), 1284–1290 (2006).
  • Angelone DF, Wessels MR, Coughlin M et al. Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-α production in vitro and in vivo. Pediatr. Res.60(2), 205–209 (2006).
  • Kollmann TR, Crabtree J, Rein-Weston A et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol.183(11), 7150–7160 (2009).
  • Vanden Eijnden S, Goriely S, De Wit D, Goldman M, Willems F. Preferential production of the IL-12(p40)/IL-23(p19) heterodimer by dendritic cells from human newborns. Eur. J. Immunol.36(1), 21–26 (2006).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature442(7098), 39–44 (2006).
  • Philbin VJ, Levy O. Developmental biology of the innate immune response: implications for neonatal and infant vaccine development. Pediatr. Res.65(5 Pt 2), 98R–105R (2009).
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev.9(4), 287–293 (2009).
  • Ballou WR. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol.31(9), 492–500 (2009).
  • Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat. Rev.9(3), 185–194 (2009).
  • Naniche D. Human immunology of measles virus infection. Curr. Top. Microbiol. Immunol.330, 151–171 (2009).
  • Kruschinski C, Zidan M, Debertin AS, von Horsten S, Pabst R. Age-dependent development of the splenic marginal zone in human infants is associated with different causes of death. Hum. Pathol.35(1), 113–121 (2004).
  • Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat. Rev.4(7), 553–564 (2004).
  • Marchant A, Pihlgren M, Goetghebuer T et al. Predominant influence of environmental determinants on the persistence and avidity maturation of antibody responses to vaccines in infants. J. Infect. Dis.193(11), 1598–1605 (2006).
  • Tappero JW, Lagos R, Ballesteros AM et al. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA281(16), 1520–1527 (1999).
  • Siegrist CA. The challenges of vaccine responses in early life: selected examples. J. Comp. Pathol.137(Suppl. 1), S4–S9 (2007).
  • Richmond P, Borrow R, Miller E et al. Meningococcal serogroup C conjugate vaccine is immunogenic in infancy and primes for memory. J. Infect. Dis.179(6), 1569–1572 (1999).
  • Tiru M, Hallander HO, Gustafsson L, Storsaeter J, Olin P. Diphtheria antitoxin response to DTP vaccines used in Swedish pertussis vaccine trials, persistence and projection for timing of booster. Vaccine18(21), 2295–2306 (2000).
  • Low N, Kraemer S, Schneider M, Restrepo AM. Immunogenicity and safety of aerosolized measles vaccine: systematic review and meta-analysis. Vaccine26(3), 383–398 (2008).
  • Jonsdottir I. Maturation of mucosal immune responses and influence of maternal antibodies. J. Comp. Pathol.137(Suppl. 1), S20–S26 (2007).
  • Slyker JA, Lohman BL, Mbori-Ngacha DA et al. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine23(38), 4711–4719 (2005).
  • Lohman BL, Slyker JA, Richardson BA et al. Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon responses during the first year of life in HIV-1-infected infants. J. Virol.79(13), 8121–8130 (2005).
  • Marchant A, Goldman M. T cell-mediated immune responses in human newborns: ready to learn? Clin. Exp. Immunol.141(1), 10–18 (2005).
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Ann. Rev. Immunol.27, 393–422 (2009).
  • Gans HA, Yasukawa LL, Alderson A et al. Humoral and cell-mediated immune responses to an early 2-dose measles vaccination regimen in the United States. J. Infect. Dis.190(1), 83–90 (2004).
  • Vekemans J, Amedei A, Ota MO et al. Neonatal bacillus Calmette–Guérin vaccination induces adult-like IFN-γ production by CD4+ T lymphocytes. Eur. J. Immunol.31(5), 1531–1535 (2001).
  • Prescott SL. Role of dietary immunomodulatory factors in the development of immune tolerance. Nestle Nutr. Workshop Series64, 185–194; discussion 194–200, 251–187 (2009).
  • Beveridge NE, Price DA, Casazza JP et al. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol.37(11), 3089–3100 (2007).
  • Akondy RS, Monson ND, Miller JD et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol.183(12), 7919–7930 (2009).
  • Soares AP, Scriba TJ, Joseph S et al. Bacillus Calmette–Guerin vaccination of human newborns induces T cells with complex cytokine and phenotypic profiles. J. Immunol.180(5), 3569–3577 (2008).
  • Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol. Rev.226, 191–204 (2008).
  • Rochman I, Paul WE, Ben-Sasson SZ. IL-6 increases primed cell expansion and survival. J. Immunol.174(8), 4761–4767 (2005).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Flanagan KL, Halliday A, Burl S et al. The effect of placental malaria infection on cord blood and maternal immunoregulatory responses at birth. Eur. J. Immunol.40(4), 1062–1072 (2010).
  • Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H. Development and activation of regulatory T cells in the human fetus. Eur. J. Immunol.35(2), 383–390 (2005).
  • Darrasse-Jeze G, Klatzmann D, Charlotte F, Salomon BL, Cohen JL. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett.102(1), 106–109 (2006).
  • Michaelsson J, Mold JE, McCune JM, Nixon DF. Regulation of T cell responses in the developing human fetus. J. Immunol.176(10), 5741–5748 (2006).
  • Byrne JA, Stankovic AK, Cooper MD. A novel subpopulation of primed T cells in the human fetus. J. Immunol.152(6), 3098–3106 (1994).
  • Takahata Y, Nomura A, Takada H et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp. Hematol.32(7), 622–629 (2004).
  • Godfrey WR, Spoden DJ, Ge YG et al. Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood105(2), 750–758 (2005).
  • Wing K, Ekmark A, Karlsson H, Rudin A, Suri-Payer E. Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology106(2), 190–199 (2002).
  • Ng WF, Duggan PJ, Ponchel F et al. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood98(9), 2736–2744 (2001).
  • Quinn KM, Rich FJ, Goldsack LM et al. Accelerating the secondary immune response by inactivating CD4+CD25+ T regulatory cells prior to BCG vaccination does not enhance protection against tuberculosis. Eur. J. Immunol.38(3), 695–705 (2008).
  • Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J. Immunol.175(4), 2517–2524 (2005).
  • Nardelli DT, Burchill MA, England DM, Torrealba J, Callister SM, Schell RF. Association of CD4+ CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi-vaccinated and challenged g-interferon-deficient mice treated with anti-interleukin-17 antibody. Clin. Diagn. Lab. Immunol.11(6), 1075–1084 (2004).
  • Moore AC, Gallimore A, Draper SJ, Watkins KR, Gilbert SC, Hill AV. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J. Immunol.175(11), 7264–7273 (2005).
  • Hanekom WA. The immune response to BCG vaccination of newborns. Ann. NY Acad. Sci.1062, 69–78 (2005).
  • Mills KH. Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunol. Lett.122(2), 108–111 (2009).
  • Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp. Hematol.31(8), 708–714 (2003).
  • Kessel A, Yehudai D, Peri R et al. Increased susceptibility of cord blood B lymphocytes to undergo spontaneous apoptosis. Clin. Exp. Immunol.145(3), 563–570 (2006).
  • Hanekom WA, Hughes J, Mavinkurve M et al. Novel application of a whole blood intracellular cytokine detection assay to quantitate specific T-cell frequency in field studies. J. Immunol. Meth.291(1–2), 185–195 (2004).
  • D’Arena G, Musto P, Cascavilla N et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica83(3), 197–203 (1998).
  • Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat. Rev.7(2), 144–154 (2007).
  • Puig-Kroger A, Sanz-Rodriguez F, Longo N et al. Maturation-dependent expression and function of the CD49d integrin on monocyte-derived human dendritic cells. J. Immunol.165(8), 4338–4345 (2000).
  • Fine PE, Williams TN, Aaby P et al. Epidemiological studies of the ‘non-specific effects’ of vaccines: I – data collection in observational studies. Trop. Med. Int. Health14(9), 969–976 (2009).
  • Farrington CP, Firth MJ, Moulton LH, Ravn H, Andersen PK, Evans S. Epidemiological studies of the ‘non-specific effects’ of vaccines: II-methodological issues in the design and analysis of cohort studies. Trop. Med. Int. Health14(9), 977–985 (2009).
  • Breiman RF, Streatfield PK, Phelan M, Shifa N, Rashid M, Yunus M. Effect of infant immunisation on childhood mortality in rural Bangladesh: analysis of health and demographic surveillance data. Lancet364(9452), 2204–2211 (2004).
  • Lehmann D, Vail J, Firth MJ, de Klerk NH, Alpers MP. Benefits of routine immunizations on childhood survival in Tari, Southern Highlands Province, Papua New Guinea. Int. J. Epidemiol.34(1), 138–148 (2005).
  • Roth A, Gustafson P, Nhaga A et al. BCG vaccination scar associated with better childhood survival in Guinea-Bissau. Int. J. Epidemiol.34(3), 540–547 (2005).
  • Aaby P, Biai S, Veirum JE et al. DTP with or after measles vaccination is associated with increased in-hospital mortality in Guinea-Bissau. Vaccine25(7), 1265–1269 (2007).
  • Aaby P, Garly ML, Nielsen J et al. Increased female–male mortality ratio associated with inactivated polio and diphtheria–tetanus–pertussis vaccines: Observations from vaccination trials in Guinea-Bissau. Pediatr. Infect. Dis. J.26(3), 247–252 (2007).
  • Aaby P, Ibrahim SA, Libman MD, Jensen H. The sequence of vaccinations and increased female mortality after high-titre measles vaccine: trials from rural Sudan and Kinshasa. Vaccine24(15), 2764–2771 (2006).
  • Ota MO, Vekemans J, Schlegel-Haueter SE et al. Influence of Mycobacterium bovis bacillus Calmette–Guerin on antibody and cytokine responses to human neonatal vaccination. J. Immunol.168(2), 919–925 (2002).
  • Vidor E. The nature and consequences of intra- and inter-vaccine interference. J. Comp. Pathol.137(Suppl. 1), S62–S66 (2007).
  • Moulton LH, Rahmathullah L, Halsey NA, Thulasiraj RD, Katz J, Tielsch JM. Evaluation of T cell-specific effects of infant immunizations on early infant mortality in a southern Indian population. Trop. Med. Int. Health10(10), 947–955 (2005).
  • Roth A, Sodemann M, Jensen H et al. Tuberculin reaction, BCG scar, and lower female mortality. Epidemiology17(5), 562–568 (2006).
  • Aaby P, Jensen H, Walraven G. Age-specific changes in the female–male mortality ratio related to the pattern of vaccinations: an observational study from rural Gambia. Vaccine24(22), 4701–4708 (2006).
  • Veirum JE, Sodemann M, Biai S et al. Routine vaccinations associated with divergent effects on female and male mortality at the paediatric ward in Bissau, Guinea-Bissau. Vaccine23(9), 1197–1204 (2005).
  • Diness BR, Fisker AB, Roth A et al. Effect of high-dose vitamin A supplementation on the immune response to bacille Calmette–Guerin vaccine. Am. J Clin. Nutr.86(4), 1152–1159 (2007).
  • Courant F, Aksglaede L, Antignac JP et al. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J. Clin. Endocrinol. Metab.95(1), 82–92).
  • Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev.8(9), 737–744 (2008).
  • Calder PC, Krauss-Etschmann S, de Jong EC et al. Early nutrition and immunity – progress and perspectives. Brit. J. Nutr.96(4), 774–790 (2006).
  • Savy M, Edmond K, Fine PE et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J. Nutr.139(11), S2154–S2218 (2009).
  • Silfverdal SA, Ekholm L, Bodin L. Breastfeeding enhances the antibody response to Hib and pneumococcal serotype 6B and 14 after vaccination with conjugate vaccines. Vaccine25(8), 1497–1502 (2007).
  • Moreau E, Chauvin A. Immunity against helminths: interactions with the host and the intercurrent infections. J. Biomed. Biotechnol.428593 (2010).
  • Colditz GA, Berkey CS, Mosteller F et al. The efficacy of bacillus Calmette–Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics96(1 Pt 1), 29–35 (1995).
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet346(8986), 1339–1345 (1995).
  • Miles DJ, van der Sande M, Jeffries D et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J. Virol.81(11), 5766–5776 (2007).
  • Miles DJ, Sande M, Kaye S et al. CD4+ T cell responses to cytomegalovirus in early life: a prospective birth cohort study. J. Infect. Dis.197(5), 658–662 (2008).
  • Slyker JA, Lohman-Payne BL, John-Stewart GC et al. Acute cytomegalovirus infection in Kenyan HIV-infected infants. AIDS (London, England)23(16), 2173–2181 (2009).
  • Kimman TG, Vandebriel RJ, Hoebee B. Genetic variation in the response to vaccination. Comm. Genet.10(4), 201–217 (2007).
  • D’Angio CT. Active immunization of premature and low birth-weight infants: a review of immunogenicity, efficacy, and tolerability. Paediatr. Drugs9(1), 17–32 (2007).
  • Jahn A, Floyd S, Mwinuka V et al. Ascertainment of childhood vaccination histories in northern Malawi. Trop. Med. Int. Health13(1), 129–138 (2008).
  • Waterhouse T, Pollard AJ. Clinical trials: consent in children. Expert Rev. Vaccines4(1), 1–3 (2005).
  • Finan C, Ota MO, Marchant A, Newport MJ. Natural variation in immune responses to neonatal Mycobacterium bovis bacillus Calmette–Guerin (BCG) vaccination in a cohort of Gambian infants. PLoS ONE3(10), e3485 (2008).
  • Seale AC, de Jong BC, Zaidi I et al. Effects of cryopreservation on CD4+ CD25+ T cells of HIV-1 infected individuals. J. Clin. Lab. Anal.22(3), 153–158 (2008).
  • Querec TD, Akondy RS, Lee EK et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol.10(1), 116–125 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.