102
Views
6
CrossRef citations to date
0
Altmetric
Review

Vaccine-induced antibody responses in patients with carcinoma

Pages 579-594 | Published online: 09 Jan 2014

References

  • Finn OJ. Cancer immunology. N. Engl. J. Med.358, 2704–2715 (2008).
  • Old LJ. Cancer vaccines: an overview. Cancer Immunity8(Suppl. 1), 1–4 (2008).
  • Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol.90, 1–50 (2006).
  • Livingston PO, Ragupathi G, Musselli C. Autoimmune and antitumor consequences of antibodies against antigens shared by normal and malignant tissues. J. Clin. Immunol.20(2), 85–93 (2000).
  • Morris LF, Ribas A. Therapeutic cancer vaccines. Surg. Oncol. Clin. N. Am.16, 81–831 (2007).
  • Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother.54, 721–728 (2005).
  • Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol. Rev.222, 129–144 (2008).
  • King C. New insights into the differentiation and function of T follicular helper cells. Nature Rev. Immunol.9, 757–766 (2009).
  • Malo KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat. Immunol.2, 816–822 (2001).
  • Piersmaa SJ, Weltersb MJP, van der Burg SH. Tumor-specific regulatory T cells in cancer patients. Human Immunol.69, 241–249 (2008).
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol.25, 267–296 (2007).
  • Zwirner NW, Croci DO, Domaica CI, Rabinovich GA. Overcoming the hurdles of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells. Curr. Pharm. Des.16(3), 255–267 (2010).
  • Reilly RT, Emens LA, Jaffee EM. Humoral and cellular immune responses: Independent forces or collaborators in he fight against cancer? Curr. Opin. Investig. Drugs2(1), 133–135 (2001).
  • Ragupathi G, Gathuru J, Livingston PO. Antibody inducing polyvalent cancer vaccines. Cancer Treat. Res.123, 157–180 (2005).
  • Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nature Rev. Cancer4, 448–456 (2004).
  • Koebel CM, Vermi W, Swann JB et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature450, 903–907 (2007).
  • Sahin U, Tureci O, Schmitt H et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA92, 11810–11813 (1995).
  • Minenkova O, Pucci A, Pavoni E et al. Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int. J. Cancer106(4), 534–544 (2003).
  • Jäger D, Taverna C, Zippelius A, Knuth A. Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol. Immunother.53(3), 144–147 (2004).
  • Desmetz C, Maudelonde T, Mangé A, Solassol J. Identifying autoantibody signatures in cancer: a promising challenge. Expert. Rev. Proteomics6(4), 377–386 (2009).
  • Schmidlin H, Diehl SA, Blom B. New insights into the regulation of human B-cell differentiation. Trends Immunol.30(6), 277–285 (2009).
  • Reinhardt RL, Liang HE, Locksley RM. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol.10, 385–393 (2009).
  • Ettinger R, Sims GP, Fairhurst AM et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol.175(12), 7867–7879 (2005).
  • Bryant VL Zwirner NW, Croci DO, Domaica CI, Rabinovich GA. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol.179(12), 8180–8190 (2007).
  • Kuchen S. Robbins R, Sims GP et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell–B cell collaboration. J. Immunol.179(9), 5886–5896 (2007).
  • Maruyama M, Lam KP, Rajewsky K. Memory B cell persistence is independent of persisting immunizing antigen. Nature407, 636–642 (2000).
  • Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science298, 2199–2202 (2002).
  • Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet373, 1033–1040 (2009).
  • Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des. Devel. Ther.3, 7–16 (2009).
  • Snijdewint FG, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH et al. Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int. J. Cancer93, 97–106 (2001).
  • Ullenhag GJ, Frödin JE, Jeddi-Tehrani M et al. Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granulocyte/macrophage colony-stimulating factor. Clin. Cancer Res.10, 3273–3281 (2004).
  • Ragupathi G, Liu NX, Musselli C, Powell S, Lloyd K, Livingston PO. Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J. Immunol.174(9), 5706–5712 (2005).
  • Leibson PJ. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity6, 655–661 (1997).
  • Moreno M, Bontkes HJ, Scheper RJ, Kenemans P, Verheijen RH, von Mensdorff-Pouilly S. High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett.257(1), 47–55 (2007).
  • Arnould L, Gelly M, Penault-Llorca F et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br. J. Cancer94, 259–267 (2006).
  • Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv. Immunol.96, 179–204 (2007).
  • Cartron G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood99, 754–758 (2002).
  • Musolino A, Naldi N, Bortes B et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol.26, 1789–1796 (2008).
  • Weng WK, Czerwinski D, Timmerman J, Hsu FJ, Levy R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J. Clin. Oncol.22, 4717–4724 (2004).
  • Niwa R, Hatanaka S, Shoji-Hosaka E et al. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 is independent of FcγRIIIa functional polymorphism. Clin. Cancer Res.10, 6248–6255 (2004).
  • Suzuki E, Niwa R, Saji S et al. A nonfucosylated anti-HER2 antibody augments antibody dependent cellular cytotoxicity in breast cancer patients. Clin. Cancer Res.13, 1875–1882 (2007).
  • Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N. Engineered therapeutic antibodies with improved effector functions. Cancer Sci.100(9), 1566–1572 (2009).
  • Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene27, 161–167 (2008).
  • Celis E. Toll-like receptor ligands energize peptide vaccines through multiple paths. Cancer Res.67(17), 7945–7947 (2007).
  • Moreno M, Mol BM, von Mensdorff-Pouilly S et al. Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). Cancer Lett.272(1), 70–76 (2008).
  • Liljefors M, Nilsson B, Mellstedt H, Frödin JE. Influence of varying doses of granulocyte-macrophage colony-stimulating factor on pharmacokinetics and antibody-dependent cellular cytotoxicity. Cancer Immunol. Immunother.57(3), 379–388 (2008).
  • Carson WE, Parihar R, Lindemann MJ et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur. J. Immunol.31, 3016–3025 (2001).
  • Watanabe M, Kono K, Kawaguchi Y et al. Interleukin-21 can efficiently restore impaired antibody-dependent cell-mediated cytotoxicity in patients with oesophageal squamous cell carcinoma. Br. J. Cancer102(3), 520–529 (2010).
  • Kono K, Takahashi A, Ichira F, Sugai H, Akaike H, Fujii H. Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer. Cancer Res.62, 5813–5817 (2002).
  • Wang G, Tschoi M, Spolski R et al.In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res.63, 9016–9022 (2003).
  • Davis ID, Skrumsager BK, Cebon J et al. An open-label, two-arm, Phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res.13(12), 3630–3636 (2007).
  • Thompson JA, Curti BD, Redman BG et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol.26(12), 2034–2039 (2008).
  • Frederiksen KS, Lundsgaard D, Freeman JA et al. IL-21 induces in vivo immune activation of NK cells and CD8+ T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol. Immunother.57(10), 1439–1449 (2008).
  • Davis ID, Brady B, Kefford RF et al. Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a Phase IIa trial. Clin. Cancer Res.15(6), 2123–2129 (2009).
  • Dodds MG, Frederiksen KS, Skak K et al. Immune activation in advanced cancer patients treated with recombinant IL-21: multianalyte profiling of serum proteins. Cancer Immunol. Immunother.58(6), 843–854 (2009).
  • Walport MJ. Complement. First of two parts. N. Engl. J. Med.344(14), 1058–1066 (2001).
  • Walport MJ. Complement. Second of two parts. N. Engl. J. Med.344(15), 1140–1144 (2001).
  • Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res.20, 34–50 (2010).
  • Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol. Immunol.40, 109–123 (2003).
  • Yan J, Allendorf DJ, Li B, Yan R, Hansen R, Donev R. The role of membrane complement regulatory proteins in cancer immunotherapy. Adv. Exp. Med. Biol.632, 159–174 (2008).
  • Gancz D, Fishelson Z. Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol. Immunol.46(14), 2794–2800 (2009).
  • Xu C, Jung M, Burkhardt M et al. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate62, 224–232 (2005).
  • Watson NF, Durrant LG, Madjd Z, Ellis IO, Scholefield JH, Spendlove I. Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. Cancer Immunol. Immunother.55, 973–980 (2006).
  • Bjorge L, Hakulinen J, Vintermyr OK et al. Ascitic complement system in ovarian cancer. Br. J. Cancer92, 895–905 (2005).
  • Fishelson Z, Hochman I, Greene LE, Eisenberg E. Contribution of heat shock proteins to cell protection from complement-mediated lysis. Int. Immunol.13, 983–991 (2001).
  • Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int. Immunol.17, 1239–1248 (2005).
  • Sreedhar AS, Nardai G, Csermely P. Enhancement of complement-induced cell lysis: a novel mechanism for the anticancer effects of Hsp90 inhibitors. Immunol. Lett.92, 157–161 (2004).
  • Burchell J, Poulsom R, Hanby A et al. An α2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology9, 1307–1311 (1999).
  • Natsume A, In M, Takamura H et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res.68(10), 3863–3872 (2008).
  • Macor P, Tripodo C, Zorzet S et al.In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res.67, 10556–10563 (2007).
  • Carroll MC. The complement system in regulation of adaptive immunity. Nat. Immunol.5(10), 981–986 (2004).
  • Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science272, 50–54 (1996).
  • Fang Y, Xu C, Fu Y, Holers VM, Molina H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol.160, 5273–5279 (1998).
  • Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT. Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte containing complement receptor type 2 and CD19. J. Exp. Med.173, 55–64 (1991).
  • Barrington RA, Zhang M, Zhong X et al. CD21/CD19 coreceptor signaling promotes B cell survival during primary immune responses. J. Immunol.175, 2859–2867 (2005).
  • Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol.27(34), 5838–5847 (2009).
  • Capdevila J, Elez E, Macarulla T et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer. Treat. Rev.35, 354–363 (2009).
  • Wesseling J, Van der Valk SW, Vos HL, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell Biol.129, 255–265 (1995).
  • Hilkens J, Wesseling J, Vos HL et al. Involvement of the cell-surface bound mucin, episialin/MUC1, in progression of human carcinomas. Biochem. Soc. Trans.23, 822–826 (1995).
  • Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res.58, 2014–2019 (1998).
  • Zhang K, Baeckström D, Brevinge H, Hansson GC. Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis A and X epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J. Cell Biochem.60(4), 538–549 (1996).
  • Zhang K, Sikut R, Hansson GC. A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell. Immunol.176(2), 158–165 (1997).
  • Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA, Zimmermann G, Hugh JC. The breast mucin MUC1 as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res.56, 4244–4249 (1996).
  • Rahn JJ, Chow JW, Horne GJ et al. MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin. Exp. Metastasis22, 475–483 (2005).
  • Jinushi M, Hodi FS, Dranoff G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl Acad. Sci. USA103(24), 9190–9195 (2006).
  • Keilholz U, Weber J, Finke JH et al. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J. Immunother.25(2), 97–138 (2002).
  • Hornbeck P. Enzyme-linked immunosorbent assays. Curr. Protoc. Immunol.2, 2.1 (2001).
  • von Mensdorff-Pouilly S, Vennegoor C, Hilgers J. Detection of humoral immune responses to mucins. Methods Mol. Biol.125, 495–500 (2000).
  • von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P et al. An enzyme-linked immunosorbent assay for the measurement of circulating antibodies to polymorphic epithelial mucin (MUC1). Tumour Biol.19(3), 186–195 (1998).
  • Oei ALM, Moreno M, Verheijen RHM et al. Induction of IgG antibodies to MUC1 is associated with improved survival in patients with epithelial ovarian cancer. Int. J. Cancer123(8), 1848–1853 (2008).
  • Britten CM, Janetzki S, van der Burg SH, Gouttefangeas C, Hoos A. Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol. Immunother.57, 285–288 (2008).
  • Hornbeck P, Fleisher TA, Papadopoulos NM. Isotype determination of antibodies. Curr. Protoc. Immunol.2, 2.2 (2001).
  • von Mensdorff-Pouilly S, Petrakou E, Kenemans P et al. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and N-acetylgalactosamine (GalNAc) peptides. Int. J. Cancer86(5), 702–712 (2000).
  • Vennegoor CJ, Nijman HW, Drijfhout JW et al. Autoantibodies to p53 in ovarian cancer patients and healthy women: a comparison between whole p53 protein and 18-mer peptides for screening purposes. Cancer Lett.116(1), 93–101 (1997).
  • Schol DJ, Meulenbroek MF, Snijdewint FG et al. ‘Epitope fingerprinting’ using overlapping 20-mer peptides of the MUC1 tandem repeat sequence. Tumour Biol.19(Suppl. 1), 35–45 (1998).
  • von Mensdorff-Pouilly S, Kinarsky L, Engelmann K et al. Sequence-variant repeats of MUC1 show higher conformational flexibility, are less densely O-glycosylated and induce differential B lymphocyte responses. Glycobiology15(8), 735–746 (2005).
  • Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISpot) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods65, 109–121 (1983).
  • Mashishi T, Gray CM. The ELISpot assay: an easily transferable method for measuring cellular responses and identifying T cell epitopes. Clin. Chem. Lab. Med.40(9), 903–910 (2002).
  • Janetzki S, Panageas KS, Ben-Porat L et al. Results and harmonization guidelines from two large-scale international ELISpot profficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer. Immunol. Immunother.57(3), 303–315 (2008).
  • Nelson DL, Kurman CC, Serbousek DE. 51Cr release assay of antibody-dependent cell-mediated cytotoxicity (ADCC). Curr. Protoc. Immunol.7, 7.27 (2001).
  • Gilewski T, Ragupathi G, Bhuta S et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a Phase I trial. Proc. Natl Acad. Sci. USA98(6), 3270–3275 (2001).
  • Czerniecki BJ, Koski GK, Koldovsky U et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res.67(4), 1842–1852 (2007).
  • Mishima Y, Sugimura N, Matsumoto-Mishima Y et al. An imaging-based rapid evaluation method for complement-dependent cytotoxicity discriminated clinical response to rituximab-containing chemotherapy. Clin. Cancer Res.15(10), 3624–3632 (2009).
  • Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert. Rev. Vaccines7(7), 963–975 (2008).
  • Kiessling A, Fϋssel S, Wehner R et al. Advances in specific immunotherapy for prostate cancer. Eur. Urology53, 694–708 (2008).
  • Palma M, Choudhury A, Mellstedt H. Cancer vaccines for non-small-cell lung cancer. Minerva Chir.64(6), 643–653 (2009).
  • Hanisch FG. Design of a MUC1-based cancer vaccine. Biochem. Soc. Trans.33, 705–708 (2005).
  • Menard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene22, 6570–6578 (2003).
  • Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyib GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist14, 320–368 (2009).
  • Disis ML, Calenoff E, McLaughlin G et al. Existent T cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res.54, 16–20 (1994).
  • Ward RL, Hawkins NJ, Coomber D et al. Antibody immunity to the HER-2/neu oncogenic protein in patients with colorectal cancer. Hum. Immunol.60, 510–515 (1999).
  • Bernhard H, Salazar L, Schiffman K et al. Vaccination against the HER-2/neu oncogenic protein. Endocr. Relat. Cancer9, 33–44 (2002).
  • Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J. Clin. Immunol.24(5), 571–578 (2004).
  • Disis ML, Schiffman K, Guthrie K et al. Effect of dose on immune response in patients vaccinated with an HER-2/neu intracellular domain protein-based vaccine. J. Clin. Oncol.22(10), 1916–1925 (2004).
  • Morse MA, Hobeika A, Osada T et al. Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2. J. Transl. Med.5, 42 (2007).
  • Kaumaya PT, Foy KC, Garrett J et al. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors. J. Clin. Oncol.27(31), 5270–5277 (2009).
  • Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci.100(11), 2014–2021 (2009).
  • Atanackovic D, Altorki NK, Stockert E et al. Vaccine-induced CD4+ T-cell responses to MAGE-3 protein in lung cancer patients. J. Immunol.172, 3289–3296 (2004).
  • Atanackovic D, Altorki NK, Cao Y et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl Acad. Sci. USA105, 1650–1655 (2008).
  • Vansteenkiste J, Zielinski M, Linder A et al. Final results of a multi-center, double-blind, randomized, placebo-controlled Phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage Ib/II non-small cell lung cancer (NSCLC). J. Clin. Oncol.25(18 Suppl.), S398 (2007).
  • Tyagi P, Mirakhur B. MAGRIT: the largest-ever Phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin. Lung Cancer10(5), 371–374 (2009).
  • Gnjatic S, Nishikawa H, Jungbluth AA et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res.95, 1–30 (2006).
  • Chen YT, Scanlan MJ, Sahin U et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA94, 1914–1918 (1997).
  • Bender A, Karbach J Neumann A et al. LUD 00–009: Phase I study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive atients with NY-ESO-1-expressing cancer. Cancer Immunity7, 16 (2007).
  • Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide® ISA-51: association with survival. Int. J. Cancer126, 909–918 (2010).
  • Odunsi K, Qian F, Matsuzaki J et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA104, 12837–12842 (2007).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ Tcell responses in humans. Proc. Natl Acad. Sci. USA101, 10697–10702 (2004).
  • Chen Q, Jackson H, Parente P et al. Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc. Natl Acad. Sci. USA101, 9363–9368 (2004).
  • Valmori D, Souleimanian NE, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA104, 8947–8952 (2007).
  • Kawabata R, Wada H, Isobe M et al. Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int. J. Cancer120(10), 2178–2184 (2007).
  • Aoki M, Ueda S, Nishikawa H et al. Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432. Vaccine27(49), 6854–6861 (2009).
  • Jager E, Karbach J, Gnjatic S et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl Acad. Sci. USA103, 14453–14458 (2006).
  • Yuan J, Gnjatic S, Li H et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105, 20410–20415 (2008).
  • Thompson JA, Grunert F, Zimmermann W. Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives. J. Clin. Lab. Anal.5, 344–366 (1991).
  • Berinstein NL. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. J. Clin. Oncol.20, 2197–2207 (2002).
  • Marshall JL, Gulley JL, Arlen PM et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J. Clin. Oncol.23(4), 720–731 (2005).
  • von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, Verheijen RH, Kenemans P. Human MUC1 mucin: a multifaceted glycoprotein. Int. J. Biol. Markers15(4), 343–356 (2000).
  • Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem.265, 15286–15293 (1990).
  • Burchell J, Taylor-Papadimitriou J. Effect of modification of carbohydrate side chains on the reactivity of antibodies with coreprotein epitopes of the MUC1 gene product. Epithelial Cell Biol.2, 155–162 (1993).
  • Karsten U, von Mensdorff-Pouilly S, Goletz S. What makes MUC1 a tumor antigen? Tumour Biol.26(4), 217–220 (2005).
  • Ionnanides CG, Fisk B, Jerome KR et al. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J. Immunol.151, 693–703 (1993).
  • von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P et al. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol.18, 574–583 (2000).
  • Apostolopoulos V, Hu XF, Pouniotis DS, Xing PX. MUC1: a molecule of many talents. Curr. Trends Immunol.12, 629–639 (2004).
  • Gilewski T, Adluri S, Ragupathi G et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res.6, 1693–1701 (2000).
  • Sabbatini PJ, Ragupathi G, Hood C et al. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin. Cancer Res.13, 4170–4177 (2007).
  • Zhang S, Zhang HS, Cordon-Cardo C et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer73(1), 50–56 (1997).
  • Zhang S, Cordon-Cardo C, Zhang HS et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer73(1), 42–49 (1997).
  • Holmberg LA, Sandmaier BM. Vaccination with theratope (STn-KLH) as treatment for breast cancer. Expert Rev. Vaccines3(6), 655–663 (2004).
  • Braun DP, Crist KA, Shaheen F, Staren ED, Andrews S, Parker J. Aromatase inhibitors increase the sensitivity of human tumor cells to monocyte-mediated, antibody-dependent cellular cytotoxicity. Am. J. Surg.190(4), 570–571 (2005).
  • Zhu J, Warren JD, Danishefsky SJ. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan–Kettering experience Expert Rev. Vaccines8(10), 1399–1413 (2009).
  • Gilewski TA, Ragupathi G, Dickler et al. Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin. Cancer Res.13(10), 2977–2985 (2007).
  • Finke LH, Wentworth K, Blumenstein B, Rudolph NS, Levitsky H, Hoos A. Lessons from randomized Phase III studies with active cancer immunotherapies – outcomes from the 2006 Meeting of the Cancer Vaccine Consortium (CVC). Vaccine25S, B97–B109 (2007).
  • Hoos A, Parmiani G, Hege K et al. A clinical development paradigm for cancer vaccines and related biologics. J. Immunother.30(1), 1–15 (2007).
  • Wolchok JD, Hoos A, Day S. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res.15(23), 7412–7420 (2009).
  • Gulley JL, Madan RA, Arlen PM. Enhancing efficacy of therapeutic vaccinations by combination with other modalities Vaccine25S, B89–B96 (2007).
  • Cheever MA, Allison JP, Ferris AS et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res.15(17), 5323–5337 (2009).
  • Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer103, 97–100 (2003).
  • Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M. Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am. J. Respir. Crit. Care Med.161, 589–594 (2000).
  • Fagerberg J, Hjelm AL, Ragnhammar P, Frödin JE, Wigzell H, Mellstedt H. Tumor regression in monoclonal antibody-treated patients correlates with the presence of anti-idiotype-reactive T lymphocytes. Cancer Res.55, 1824–1827 (1995).
  • de Bono JS, Rha SY, Stephenson J et al. Phase I trial of a murine antibody to MUC1 in patients with metastatic cancer: evidence for the activation of humoral and cellular antitumor immunity. Ann. Oncol.15, 1825–1833 (2004).
  • Taylor C, Hershman D, Shah N et al. Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin. Cancer Res.13, 5133–5143 (2007).
  • Hudis AC. Trastuzumab – mechanism of action and use in clinical practice. N. Engl. J. Med.357, 39–51 (2007).
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature438, 967–974 (2005).
  • Livingston PO, Wong GY, Adluri S et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J. Clin. Oncol.12, 1036–1044 (1994).
  • Hsueh EC, Gupta RK, Qi K et al. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J. Clin. Oncol.16, 2913–2920 (1998).
  • Takahashi T, Johnson TD, Nishinaka Y et al. IgM anti-ganglioside antibodies induced by melanoma cell vaccine correlate with survival of melanoma patients. J. Invest. Dermatol.112, 205–209 (1999).
  • Taylor S, Zhou J, Park J et al. Concerted potent humoral immune responses to autoantigens are associated with tumor destruction and favourable clinical outcomes without autoimmunity. Clin. Cancer Res.14(12), 3896–3905 (2008).
  • Bon GG, van Kamp GJ, Verstraeten RA, von Mensdorff-Pouilly S, Hilgers J, Kenemans P. Quantification of MUC1 in breast cancer patients. A method comparison study. Eur. J. Obstet. Gynecol. Reprod Biol.83(1), 67–75 (1999).
  • Verheijen RH, von Mensdorff-Pouilly S, van Kamp GJ, Kenemans P. CA125: fundamental and clinical aspects. Semin. Cancer Biol.9, 117–124 (1999).
  • Boeck S, Stieber P, Holdenrieder S, Wilkowski R, Heinemann V. Prognostic and therapeutic significance of carbohydrate antigen 19–19 as tumor marker in patients with pancreatic cancer. Oncology70(4), 255–264 (2006).
  • Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg. Oncol.18(1), 15–24 (2009).
  • Makarov DV, Loeb S, Getzenberg RH, Partin AW. Biomarkers for prostate cancer. Annu. Rev. Med.60, 139–151 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.