225
Views
19
CrossRef citations to date
0
Altmetric
Review

Evaluation of cellular immune responses in cancer vaccine recipients: lessons from NY-ESO-1

, , , &
Pages 617-629 | Published online: 09 Jan 2014

References

  • van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038), 1643–1647 (1991).
  • Slingluff CL Jr, Petroni GR, Olson W et al. Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. J. Clin. Oncol.26(30), 4973–4980 (2008).
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun.4, 1 (2004).
  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer5(8), 615–625 (2005).
  • Hofmann O, Caballero OL, Stevenson BJ et al. Genome-wide analysis of cancer/testis gene expression. Proc. Natl Acad. Sci. USA105(51), 20422–20427 (2008).
  • Jackson H, Dimopoulos N, Mifsud NA et al. Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T cell responses to tumor antigen NY-ESO-1. J. Immunol.176(10), 5908–5917 (2006).
  • Nicholaou T, Ebert L, Davis ID et al. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol. Cell Biol.84(3), 303–317 (2006).
  • Gnjatic S, Nishikawa H, Jungbluth AA et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res.95, 1–30 (2006).
  • Stockert E, Jäger E, Chen Y-T et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med.187(8), 1349–1354 (1998).
  • Jager E, Chen YT, Drijfhout JW et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med.187(2), 265–270 (1998).
  • Hunder NN, Wallen H, Cao J et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med.358(25), 2698–2703 (2008).
  • Scanlan MJ, Gout I, Gordon CM et al. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun.1, 4 (2001).
  • Scanlan MJ, Welt S, Gordon CM et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res.62(14), 4041–4047 (2002).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc. Natl Acad. Sci. USA101(29), 10697–10702 (2004).
  • Jager E, Karbach J, Gnjatic S et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl Acad. Sci. USA103(39), 14453–14458 (2006).
  • Valmori D, Souleimanian NE, Hesdorffer CS, Ritter G, Old LJ, Ayyoub M. Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clin. Immunol.117(1), 24–30 (2005).
  • Stockert E, Jager E, Chen YT et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med.187(8), 1349–1354 (1998).
  • Nakamura S, Nouso K, Noguchi Y et al. Expression and immunogenicity of NY-ESO-1 in hepatocellular carcinoma. J. Gastroenterol. Hepatol.21(8), 1281–1285 (2006).
  • Tureci O, Mack U, Luxemburger U et al. Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Lett.236(1), 64–71 (2006).
  • Wang Y, Wu XJ, Zhao AL et al. Cancer/testis antigen expression and autologous humoral immunity to NY-ESO-1 in gastric cancer. Cancer Immun.4, 11 (2004).
  • Gnjatic S, Atanackovic D, Jager E et al. Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc. Natl Acad. Sci. USA100(15), 8862–8867 (2003).
  • Cebon JS, Svobodova S, Browning J et al.Prognostic impact of cancer-testis antigen expression in primary cutaneous melanoma. J. Clin. Oncol.27(Suppl. 15) (2009) (Abstract 9004).
  • Shackleton MJ, Sturrock S, MacGreogor D et al. Indolent patterns of disease progression in melanoma patients expressing anti-NY-ESO-1 antibodies. In: Cancer Immunosurveillance 1999. Cancer Research Institute, NY, USA, 1–9 (1999).
  • Yuan J, Gnjatic S, Li H et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105(51), 20410–20415 (2008).
  • Barrow C, Browning J, MacGregor D et al. Tumor antigen expression in melanoma varies according to antigen and stage. Clin. Cancer Res.12(3 Pt 1), 764–771 (2006).
  • Vaughan HA, Svobodova S, Macgregor D et al. Immunohistochemical and molecular analysis of human melanomas for expression of the human cancer-testis antigens NY-ESO-1 and LAGE-1. Clin. Cancer Res.10(24), 8396–8404 (2004).
  • Jager E, Stockert E, Zidianakis Z et al. Humoral immune responses of cancer patients against ‘cancer-testis’ antigen NY-ESO-1: correlation with clinical events. Int. J. Cancer84(5), 506–510 (1999).
  • Gnjatic S, Ritter E, Buchler MW et al. Seromic profiling of ovarian and pancreatic cancer. Proc. Natl Acad. Sci. USA107(11), 5088–5093 (2010).
  • Murphy R, Green S, Ritter G et al. Recombinant NY-ESO-1 cancer antigen: production and purification under cGMP conditions. Prep. Biochem. Biotechnol.35(2), 119–134 (2005).
  • Shackleton M, Davis ID, Hopkins W et al. The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun.4, 9 (2004).
  • Chen Q, Jackson H, Shackleton M et al. Characterization of antigen-specific CD8+ T lymphocyte responses in skin and peripheral blood following intradermal peptide vaccination. Cancer Immun.5, 5 (2005).
  • Lonchay C, van der Bruggen P, Connerotte T et al. Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14631–14638 (2004).
  • Coulie PG, Connerotte T. Human tumor-specific T lymphocytes: does function matter more than number? Curr. Opin. Immunol.17(3), 320–325 (2005).
  • Connerotte T, Van Pel A, Godelaine D et al. Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res.68(10), 3931–3940 (2008).
  • Knights AJ, Nuber N, Thomson CW et al. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol. Immunother.58(3), 325–338 (2009).
  • Gnjatic S, Nagata Y, Jager E et al. Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele. Proc. Natl Acad. Sci. USA97(20), 10917–10922 (2000).
  • Gnjatic S, Altorki NK, Tang DN et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin. Cancer Res.15(6), 2130–2139 (2009).
  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol.16(4), 364–369 (1998).
  • Heiser A, Coleman D, Dannull J et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest.109(3), 409–417 (2002).
  • Grunebach F, Erndt S, Hantschel M, Heine A, Brossart P. Generation of antigen-specific CTL responses using RGS1 mRNA transfected dendritic cells. Cancer Immunol. Immunother.57(10), 1483–1491 (2008).
  • Weide B, Carralot JP, Reese A et al. Results of the first Phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother.31(2), 180–188 (2008).
  • Teufel R, Carralot JP, Scheel B et al. Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro.Cell. Mol. Life Sci.62(15), 1755–1762 (2005).
  • Kreiter S, Konrad T, Sester M, Huber C, Tureci O, Sahin U. Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA. Cancer Immunol. Immunother.56(10), 1577–1587 (2007).
  • Naota H, Miyahara Y, Okumura S et al. Generation of peptide-specific CD8+ T cells by phytohemagglutinin-stimulated antigen-mRNA-transduced CD4+ T cells. J. Immunol. Methods314(1–2), 54–66 (2006).
  • Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol.157(5), 1823–1826 (1996).
  • Bonehill A, Heirman C, Tuyaerts S et al. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res.63(17), 5587–5594 (2003).
  • Fassnacht M, Lee J, Milazzo C et al. Induction of CD4+ and CD8+ T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin. Cancer Res.11(15), 5566–5571 (2005).
  • Kavanagh DG, Kaufmann DE, Sunderji S et al. Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef. Blood107(5), 1963–1969 (2006).
  • Kreiter S, Selmi A, Diken M et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol.180(1), 309–318 (2008).
  • Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr. Opin. Immunol.18(1), 92–97 (2006).
  • Falo LD Jr, Colarusso LJ, Benacerraf B, Rock KL. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules. Proc. Natl Acad. Sci. USA89(17), 8347–8350 (1992).
  • Chen W, McCluskey J. Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv. Cancer Res.95, 203–247 (2006).
  • Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol.17, 51–88 (1999).
  • Ebert LM, Liu YC, Clements CS et al. A long, naturally presented immunodominant epitope from NY-ESO-1 tumor antigen: implications for cancer vaccine design. Cancer Res.69(3), 1046–1054 (2009).
  • Jackson HM, Dimopoulos N, Chen Q et al. A robust human T-cell culture method suitable for monitoring CD8+ and CD4+ T-cell responses from cancer clinical trial samples. J. Immunol. Methods291(1–2), 51–62 (2004).
  • Geysen HM, Meloen RH, Barteling SJ. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl Acad. Sci. USA81(13), 3998–4002 (1984).
  • Gnjatic S, Jager E, Chen W et al. CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc. Natl Acad. Sci. USA99(18), 11813–11818 (2002).
  • Bell MJ, Burrows JM, Brennan R et al. The peptide length specificity of some HLA class I alleles is very broad and includes peptides of up to 25 amino acids in length. Mol. Immunol.46(8–9), 1911–1917 (2009).
  • Kozlowski S, Corr M, Shirai M et al. Multiple pathways are involved in the extracellular processing of MHC class I-restricted peptides. J. Immunol.151(8), 4033–4044 (1993).
  • Chen W, Yewdell JW, Levine RL, Bennink JR. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med.189(11), 1757–1764 (1999).
  • Srivastava PK. Therapeutic cancer vaccines. Curr. Opin. Immunol.18(2), 201–205 (2006).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol.9(3), 239–244 (2008).
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell133(5), 775–787 (2008).
  • Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med.13(3), 108–116 (2007).
  • Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity30(5), 636–645 (2009).
  • Gallimore AM, Simon AK. Positive and negative influences of regulatory T cells on tumour immunity. Oncogene27(45), 5886–5893 (2008).
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol.6(4), 295–307 (2006).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Piersma SJ, Welters MJ, van der Burg SH. Tumor-specific regulatory T cells in cancer patients. Hum. Immunol.69(4–5), 241–249 (2008).
  • Betts GJ, Clarke SL, Richards HE, Godkin AJ, Gallimore AM. Regulating the immune response to tumours. Adv. Drug Deliv. Rev.58(8), 948–961 (2006).
  • Francois V, Ottaviani S, Renkvist N et al. The CD4+ T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res.69(10), 4335–4345 (2009).
  • Jandus C, Bioley G, Dojcinovic D et al. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer Res.69(20), 8085–8093 (2009).
  • Vence L, Palucka AK, Fay JW et al. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA104(52), 20884–20889 (2007).
  • van der Burg SH, Piersma SJ, de Jong A et al. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc. Natl Acad. Sci. USA104(29), 12087–12092 (2007).
  • Welters MJ, Kenter GG, Piersma SJ et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin. Cancer Res.14(1), 178–187 (2008).
  • Bonertz A, Weitz J, Pietsch DH et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest.119(11), 3311–3321 (2009).
  • Valitutti S, Muller S, Salio M, Lanzavecchia A. Degradation of T cell receptor (TCR)–CD3-z complexes after antigenic stimulation. J. Exp. Med.185(10), 1859–1864 (1997).
  • Nicholaou T, Ebert LM, Davis ID et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin. Cancer Res.15(6), 2166–2173 (2009).
  • Eggermont AM. Therapeutic vaccines in solid tumours: can they be harmful? Eur. J. Cancer45(12), 2087–2090 (2009).
  • North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med.155(4), 1063–1074 (1982).
  • Ghiringhelli F, Larmonier N, Schmitt E et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J. Immunol.34(2), 336–344 (2004).
  • Ghiringhelli F, Menard C, Puig PE et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother.56(5), 641–648 (2007).
  • Henney CS. A cytolytic system for the in vitro detection of cell-mediated immunity to soluble antigen. J. Immunol.105(4), 919–927 (1970).
  • Dimopoulos N, Jackson HM, Ebert L et al. Combining MHC tetramer and intracellular cytokine staining for CD8+ T cells to reveal antigenic epitopes naturally presented on tumor cells. J. Immunol. Methods340(1), 90–94 (2009).
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods65(1–2), 55–63 (1983).
  • Fischer K, Andreesen R, Mackensen A. An improved flow cytometric assay for the determination of cytotoxic T lymphocyte activity. J. Immunol. Methods259(1–2), 159–169 (2002).
  • Betts MR, Brenchley JM, Price DA et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods281(1–2), 65–78 (2003).
  • Yewdell JW. Plumbing the sources of endogenous MHC class I peptide ligands. Curr. Opin. Immunol.19(1), 79–86 (2007).
  • Gaczynska M, Rock KL, Goldberg AL. Role of proteasomes in antigen presentation. Enzyme Protein47(4–6), 354–369 (1993).
  • Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J. Exp. Med.193(11), 1319–1326 (2001).
  • Spiotto MT, Rowley DA, Schreiber H. Bystander elimination of antigen loss variants in established tumors. Nat. Med.10(3), 294–298 (2004).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298(5594), 850–854 (2002).
  • Obar JJ, Khanna KM, Lefrancois L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity28(6), 859–869 (2008).
  • Janetzki S, Britten CM, Kalos M et al. ‘MIATA’-minimal information about T cell assays. Immunity31(4), 527–528 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.