139
Views
27
CrossRef citations to date
0
Altmetric
Review

Current status of plant-made vaccines for veterinary purposes

, &
Pages 971-982 | Published online: 09 Jan 2014

References

  • Joensuu JJ, Niklander-Teeri V, Brandle JE. Transgenic plants for animal health: plant-made vaccine infectious disease control. Phytochem. Rev.7, 553–577 (2008).
  • Fouchier RAM, Munster V, Wallensten A et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol.79(5), 2814–2822 (2005).
  • Treanor J. Influenza vaccine – outmaneuvering antigenic shift and drift. N. Engl. J. Med.350(3), 218–220 (2004).
  • Macken CA, Webby RJ, Bruno WJ. Genotype turnover by reassortment of replication complex genes from avian influenza A virus. J. General Virol.87(10), 2803–2815 (2006).
  • D’Aoust MA, Lavoie PO, Couture MM et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J.6(9), 930–940 (2008).
  • Shoji Y, Chichester JA, Bi H et al. Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine26(23), 2930–2934 (2008).
  • Shoji Y, Bi H, Musiychuk K et al. Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine27(7), 1087–1092 (2009).
  • Spitsin S, Andrianov V, Pogrebnyak N et al. Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine27(9), 1289–1292 (2009).
  • Meshcheryakova YA, Eldarov MA, Migunov AI et al. Cowpea mosaic virus chimeric particles bearing the ectodomain of matrix protein 2 (M2E) of the influenza A virus: production and characterization. Appl. Mol. Biology43(4), 751–760 (2009).
  • Lamb RA, Collins PL, Kolakofsky D et al.Paramyxoviridae. In: Virus Taxonomy. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (Eds). Elsevier, Amsterdam, The Netherlands, 655–668 (2005)
  • Phillips RJ, Samson ACR, Emmerson PT. Nucleotide sequence of the 5´-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the “rule of six”. Arch. Virol.143(10), 1993–2002 (1998).
  • Alexander DJ. Preface. In: Newcastle Disease. Alexander DJ (Ed.) Kluwer Academic Publishers, MA, USA, XI (1988).
  • Mihaliak CA, Webb SR, Miller T et al. Development of plant cell produced vaccines for animal health applications. In: Proceedings of US Animal Health Association. Greensboro, NC, USA, 158–163 (2005)
  • Berinstein A, Vazquez-Rovere C, Asurmendi S et al. Mucosal and systemic immunization elicited by Newcastle disease virus (NDV) transgenic plants as antigens. Vaccine23(48–49), 5583–5589 (2005).
  • Gómez E, Chimeno Zoth S, Carrillo E, Estela Roux M, Berinstein A. Mucosal immunity induced by orally administered transgenic plants. Immunobiology213(8), 671–675 (2008).
  • Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, Fehérvári-Bone T, Gómez-Lim MA. Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transg. Res.15(4), 455–463 (2006).
  • Yang CD, Liao JT, Lai CY et al. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol.7(1), 62 (2007).
  • Hahn B-S, Jeon I-S, Jung Y-J et al. Expression of hemagglutinin–neuraminidase protein of Newcastle disease virus in transgenic tobacco. Plant Biotechnol. Reports1(2), 85–92 (2007).
  • Gómez E, Zoth SC, Asurmendi S, Vázquez Rovere C, Berinstein A. Expression of hemagglutinin–neuraminidase glycoprotein of Newcastle disease virus in agroinfiltrated Nicotiana benthamiana plants. J. Biotechnol.144(4), 337–340 (2009).
  • Doel TR. FMD vaccines. Virus Res.91(1), 81–99 (2003).
  • Alexandersen S, Zhang Z, Donaldson AI, Garland AJM. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comparative Pathol.129(1), 1–36 (2003).
  • Thompson D, Muriel P, Russell D et al. Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev. Off. Int. Epizoot.21(3), 675–687 (2002).
  • Blake A, Sinclair MT, Sugiyarto G. Quantifying the impact of foot and mouth disease on tourism and the UK economy. Tourism Economics19(4), 449–465 (2003).
  • Mackay DKJ, Forsyth MA, Davies PR et al. Differentiating infection from vaccination in foot-and-mouth disease using a panel of recombinant, non-structural proteins in ELISA. Vaccine16(5), 446–459 (1998).
  • Francis MJ, Hastings GZ, Brown F, McDermed J, Lu YA, Tam JP. Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus. Immunology73(3), 249–254 (1991).
  • Berinstein A, Tami C, Taboga O, Smitsaart E, Carrillo E. Protective immunity against foot-and-mouth disease virus induced by a recombinant vaccinia virus. Vaccine18(21), 2231–2238 (2000).
  • Hammond RW, Nemchinov LG. Plant production of veterinary vaccines and therapeutics. Plant-Produced Microb. Vaccines332, 79-102 (2009).
  • Usha R, Rohll JB, Spall VE et al. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology197, 366–374 (1993).
  • Wigdorovitz A, Perez Filgueira DM, Robertson N et al. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology264(1), 85–91 (1999).
  • Carrillo C, Wigdorovitz A, Oliveros JC et al. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J. Virol.72(2), 1688–1690 (1998).
  • Wigdorovitz A, Carrillo C, Dus Santos MJ et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa rransgenic plants expressing the viral structural protein VP1. Virology255(2), 347–353 (1999).
  • Carrillo C, Wigdorovitz A, Trono K et al. Induction of a virus-specific antibody response to foot and mouth disease virus using the structural protein VP1 expressed in transgenic potato plants. Viral Immunol.14(1), 49–57 (2001).
  • Huang Y, Liang W, Wang Y et al. Immunogenicity of the epitope of the foot-and-mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunol.18, 668–677 (2005).
  • Pan L, Zhang Y, Wang Y et al. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1–2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet. Immunol. Immunopathol.121(1–2), 83–90 (2008).
  • Li Y, Sun M, Liu J, Yang Z, Zhang Z, Shen G. High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts. Plant Cell Reports25(4), 329–333 (2006).
  • Lentz EM, Segretin ME, Morgenfeld MM et al. High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta231(2), 387–395 (2010).
  • Dus Santos MJ, Carrillo C, Ardila F et al. Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine23(15), 1838–1843 (2005).
  • Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int. J. Med. Microbiol.295(6–7), 443–454 (2005).
  • de Haan L, Verweij WR, Feil IK et al. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit. Immunology94(3), 424–430 (1998).
  • Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine6(3), 269–277 (1988).
  • Lebens M, Shahabi V, Backstrom M, Houze T, Lindblad N, Holmgren J. Synthesis of hybrid molecules between heat-labile enterotoxin and cholera toxin B subunits: potential for use in a broad-spectrum vaccine. Infect. Immun.64(6), 2144–2150 (1996).
  • Rigano MM, Sala F, Arntzen CJ, Walmsley AM. Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites. Vaccine21(7–8), 809–811 (2003).
  • Haq TA, Mason HS, Clements JD, Arntzen CJ. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science268(5211), 714–716 (1995).
  • Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine16(13), 1336–1343 (1998).
  • Lauterslager TGM, Florack DEA, van der Wal TJ et al. Oral immunisation of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine19(17–19), 2749–2755 (2001).
  • Lamphear BJ, Streatfield SJ, Jilka JM et al. Delivery of subunit vaccines in maize seed. J. Control. Release85(1–3), 169–180 (2002).
  • Streatfield S, Mayor J, Barker D et al. Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. In Vitro Cell. Dev. Biol. Plant38(1), 11–17 (2002).
  • Streatfield SJ, Lane JR, Brooks CA et al. Corn as a production system for human and animal vaccines. Vaccine21, 812–815 (2003).
  • Chikwamba R, McMurray J, Shou H et al. Expression of a synthetic E. coli heat-labile enterotoxin B sub-unit (LT-B) in maize. Mol. Breeding10(4), 253–265 (2002).
  • Karaman S, Cunnick J, Wang K. Analysis of immune response in young and aged mice vaccinated with corn-derived antigen against Escherichia coli heat-labile enterotoxin. Mol. Biotechnol.32(1), 31–42 (2006).
  • Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine25(9), 1647–1657 (2007).
  • Stoger E, Ma JKC, Fischer R, Christou P. Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol.16(2), 167–173 (2005).
  • Kang T-J, Loc N-H, Jang M-O et al. Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res.12(6), 683–691 (2003).
  • Kang T-J, Lee W-S, Choi E-G, Kim J-W, Kim B-G, Yang M-S. Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng. J. Biotechnol.121(2), 124–133 (2006).
  • Kim T-G, Kim M-Y, Kim B-G et al. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expr. Purif.51(1), 22–27 (2007).
  • Oszvald M, Kang T-J, Tomoskozi S et al. Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol. Biotechnol.35(3), 215–224 (2007).
  • Rosales-Mendoza S, Soria-Guerra R, de Jesús Olivera-Flores M et al. Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in carrot (Daucus carota L.). Plant Cell Reports26(7), 969–976 (2007).
  • Rosales-Mendoza S, Soria-Guerra RE, Lopez-Revilla R, Moreno-Fierros L, Alpuche-Solis AG. Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Reports27(1), 79–84 (2008).
  • Ravin NV, Kuprianov VV, Zamchuk LA et al. Highly efficient expression of Escherichia coli heat-labile enterotoxin B subunit in plants using potato virus X-based vector. Biochemistry (Moscow)73(10), 1108–1113 (2008).
  • Walmsley AM, Alvarez ML, Jin Y et al. Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Reports21(10), 1020–1026 (2003).
  • Rigano MM, Alvarez ML, Pinkhasov J et al. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant Cell Reports22(7), 502–508 (2004).
  • Rigano MM, Dreitz S, Kipnis A-P, Izzo AA, Walmsley AM. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine24(5), 691–695 (2006).
  • Zhang X, Yuan Z, Guo X, Li J, Li Z, Wang Q. Expression of Chlamydophila psittaci MOMP heat-labile toxin B subunit fusion gene in transgenic rice. Biologicals36, 296–302 (2008).
  • Zhang X, Yuan Z, Duan Q, Zhu H, Yu H, Wang Q. Mucosal immunity in mice induced by orally administered transgenic rice. Vaccine27(10), 1596–1600 (2009).
  • Sim J-S, Pak H-K, Kim D-S, Lee S-B, Kim Y-H, Hahn B-S. Expression and characterization of synthetic heat-labile enterotoxin B subunit and hemagglutinin–neuraminidase-neutralizing epitope fusion protein in Escherichia coli and tobacco chloroplasts. Plant Mol. Biol. Report.27(3), 388–399 (2009).
  • Van den Broeck W, Cox E, Oudega B, Goddeeris BM. The F4 fimbrial antigen of Escherichia coli and its receptors. Vet. Microbiol.71(3–4), 223–244 (2000).
  • Joensuu J, Kotiaho M, Riipi T et al. Fimbrial subunit protein FaeG expressed in transgenic tobacco inhibits the binding of F4ac enterotoxigenic Escherichia coli to porcine enterocytes. Transgenic Res.13(3), 295–298 (2004).
  • Joensuu J, Kotiaho M, Teeri T et al. Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgenic Res.15(3), 359–373 (2006).
  • Joensuu JJ, Verdonck F, Ehrström A et al. F4 (K88) fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets. Vaccine24(13), 2387–2394 (2006).
  • Piller K, Clemente T, Jun S et al. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta222(1), 6–18 (2005).
  • Drake PMW, Barbi T, Sexton A et al. Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J.23, 1–9 (2009).
  • Floss DM, Falkenburg D, Conrad U. Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res.16, 315–332 (2007).
  • Streatfield SJ, Howard JA. Plant-based vaccines. Int. J. Parasitol.33, 479–493 (2003).
  • Kirk DD, McIntosh K, Walmsley AM, Peterson RKD. Risk analysis for plant-made vaccines. Transgenic Res.14(4), 449–462 (2005).
  • Alvarez ML, Pinyerd HL, Topal E, Cardineau GA. P19-dependent and P19 independent reversion of F1-V gene silencing in tomato. Plant Mol. Biol.68, 61–79 (2008).
  • Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci.14(12), 669–679 (2009).
  • Molina A, Hervás-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J. High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol. J.2, 141–153 (2004).
  • Daniell H, Lee S-B, Panchal T, Wiebe PO. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic chloroplasts. J. Mol. Biol.311, 1001–1009 (2001).
  • Davoodi-Semiromi A, Schreiber M, Nalapalli S et al. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J.8(2), 223–242 (2009).
  • Rosales-Mendoza S, Alpuche-Solis AG, Soria-Guerra RE et al. Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant J.57(1), 45–54 (2009).
  • Rybicki EP. Plant-produced vaccines: promise and reality. Drug Discov. Today14(1–2), 16–24 (2009).
  • Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol. J.8, 620–637 (2010).
  • D’Aoust MA, Couture MM, Charland N et al. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J.8, 607–619 (2010).
  • Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol.18(2), 134–141 (2007).
  • Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J.33(5), 949–956 (2003).
  • Johansen LK, Carrington JC. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol.126(3), 930–938 (2001).
  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R. Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol.152(2), 622–633 (2009).
  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl Acad. Sci. USA101(18), 6852–6857 (2004).
  • Gleba Y, Klimyuk V, Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine23(17–18), 2042–2048 (2005).
  • Kostrzak A, Cervantes Gonzalez M, Guetard D et al. Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine27(35), 4798–4807 (2009).
  • Shaaltiel Y, Bartfeld D, Hashmueli S et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J.5(5), 579–590 (2007).
  • Rybicki EP. Third International Conference on plant-based vaccines and antibodies. Expert Rev. Vaccines8(9), 1151–1155 (2009).
  • Shepherd RP. Plant-based vaccines and antibodies – third international conference 15–17 June 2009, Verona Italy. IDrugs12(8), 485–488 (2009).
  • Khandelwal A, Sita GL, Shaila MS. Oral immunization of cattle with hemagglutinin protein of rinderpest virus expressed in transgenic peanut induces specific immune responses. Vaccine21, 3282–3289 (2003).
  • Shewen PE, Carrasco-Medina L, McBey BA, Hodgins DC. Challenges in mucosal vaccination of cattle. Vet. Immunol. Immunopathol.128, 192–198 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.