127
Views
73
CrossRef citations to date
0
Altmetric
Review

Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come

, , &
Pages 1553-1568 | Published online: 09 Jan 2014

References

  • Pardoll D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol.21, 807–839 (2003).
  • Chouaib S, Thiery J, Gati A et al. Tumor escape from killing: role of killer inhibitory receptors and acquisition of tumor resistance to cell death. Tissue Antigens60, 273–281 (2002).
  • Moller P, Hammerling G. The role of surface HLA A, B, C molecules in tumor immunity. Cancer Surv.13, 101–127 (1992).
  • Engelhard VH, Bullock TN, Colella TA, Sheasley SL, Mullins DW. Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol. Rev.188, 136–146 (2002).
  • Disis ML, Cheever MA. Oncogenic proteins as tumor antigens. Curr. Opin. Immunol.8, 637–642 (1996).
  • Srivastava PK. Heat shock protein-based novel immunotherapies. Drug News Perspect.13, 517–522 (2000).
  • Srivastava PK, Amato RJ. Heat shock proteins: the ‘Swiss army knife’ vaccines against cancers and infectious agents. Vaccine19, 2590–2597 (2001).
  • Calderwood SK, Gong J, Theriault JR, Mambula SS, Gray PJ Jr. Cell stress proteins: novel immunotherapeutics. Novartis Found. Symp.291, 115–131; discussion 131–140 (2008).
  • Bystryn JC, Zeleniuch-Jacquotte A, Oratz R et al. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin. Cancer Res.7, 1882–1887 (2001).
  • Sachdeva R, Banerjea AC, Malla N, Dubey ML. Immunogenicity and efficacy of single antigen Gp63, polytope and polytopeHSP70 DNA vaccines against visceral Leishmaniasis in experimental mouse model. PLoS ONE4, e7880 (2009).
  • Young MD, Gooch WM 3rd, Zuckerman AJ et al. Comparison of a triple antigen and a single antigen recombinant vaccine for adult hepatitis B vaccination. J. Med. Virol.64, 290–298 (2001).
  • Willadsen P. Antigen cocktails: valid hypothesis or unsubstantiated hope? Trends Parasitol.24, 164–167 (2008).
  • Rosenberg SA. Shedding light on tumor immunotherapy of cancer. N. Engl. J. Med.350, 1461–1463 (2004).
  • Lindquist S, Craig EA. The heat shock proteins. Ann. Rev. Genet.22, 631–637 (1988).
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci.62, 670–684 (2005).
  • Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK. Targeting the oncogene and kinome chaperone CDC37. Nat. Rev. Cancer8, 491–495 (2008).
  • Noessner E, Gastpar R, Milani V et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol.169, 5424–5432 (2002).
  • Subjeck JR, Sciandra JJ, Johnson RJ. Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br. J. Radiol.55, 579–584 (1982).
  • Calderwood SK, Murshid A, Prince T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology55(5), 550–558 (2009).
  • Weng D, Song B, Durfee J et al. Induction of cytotoxic T lymphocytes against ovarian cancer-initiating cells. Int. J. Cancer DOI: 10.1002/ijc.25851 (2011) (Epub ahead of print).
  • Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones14, 105–111 (2009).
  • Wei J, Hendershot LM. Protein folding and assembly in the endoplasmic reticulum. EXS77, 41–55 (1996).
  • Singh-Jasuja H, Toes RE, Spee P et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med.191, 1965–1974 (2000).
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol.20, 395–425 (2002).
  • Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci.33, 71–79 (2008).
  • Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr. Oncol. Rep.7, 104–108 (2005).
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med.178, 1391–1396 (1993).
  • Murshid A, Gong J, Calderwood SK. Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev. Vaccines7(7), 1019–1030 (2008).
  • Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur. J. Immunol.35, 2518–2527 (2005).
  • Gong J, Zhang Y, Durfee J et al. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J. Immunol.184, 488–496 (2010).
  • Manjili MH, Henderson R, Wang XY et al. Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Res.62, 1737–1742 (2002).
  • Srivastava PK, Maki RG. Stress-induced proteins in immune response to cancer. Curr. Top Microbiol. Immunol.167, 109–123 (1991).
  • Murshid A, Gong J, Calderwood SK. Heat shock protein 90 mediates efficient antigen cross-presentation through the scavenger receptor expressed by endothelial cells-I. J. Immunol.185, 2903–2917 (2010).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein Gp96–peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20, 4169–4180 (2002).
  • Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor-derived heat-shock protein Gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res.9, 3235–3245 (2003).
  • di Pietro A, Tosti G, Ferrucci PF, Testori A. Heat shock protein peptide complex 96-based vaccines in melanoma: how far we are, how far we can get. Hum. Vaccin.5(11), 727–737 (2009).
  • Srivastava PK. Therapeutic cancer vaccines. Curr. Opin. Immunol.18, 201–205 (2006).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10, 909–915 (2004).
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell92, 351–366 (1998).
  • Morshauser RC, Wang H, Flynn GC, Zuiderweg ER. The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry34, 6261–6266 (1995).
  • Zhu X, Zhao X, Burkholder WF et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science272, 1606–1614 (1996).
  • Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of Gp96-chaperoned peptides. Proc. Natl Acad. Sci. USA101, 6128–6133 (2004).
  • Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem.276, 31332–31339 (2001).
  • Zanin-Zhorov A, Cahalon L, Tal G et al. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J. Clin. Invest.116, 2022–2032 (2006).
  • Miller-Graziano CL, De A, Laudanski K, Herrmann T, Bandyopadhyay S. HSP27: an anti-inflammatory and immunomodulatory stress protein acting to dampen immune function. Novartis Found. Symp.291, 196–208; discussion 208–111, 221–194 (2008).
  • Banerjee S, Lin CF, Skinner KA et al. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res.71, 318–327 (2010).
  • Ellis RJ. Protein misassembly: macromolecular crowding and molecular chaperones. Adv. Exp. Med. Biol.594, 1–13 (2007).
  • Fourie AM, Sambrook JF, Gething MJ. Common and divergent peptide binding specificities of Hsp70 molecular chaperones. J. Biol. Chem.269, 30470–30478 (1994).
  • Wu SJ, Wang C. Binding of heptapeptides or unfolded proteins to the chimeric C-terminal domains of 70kDa heaty shock cognate protein. Eur. J. Biochem.259, 449–455 (1999).
  • Grossmann ME, Madden BJ, Gao F et al. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp. Cell Res.297, 108–117 (2004).
  • Park J, Easton DP, Chen X et al. The chaperoning properties of mouse grp170, a member of the third family of Hsp70 related proteins. Biochemistry42, 14893–14902 (2003).
  • Wang XY, Kazim L, Repasky EA, Subjeck JR. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J. Immunol.166, 490–497 (2001).
  • Kunisawa J, Shastri N. Hsp90α chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity24, 523–534 (2006).
  • Lev A, Takeda K, Zanker D et al. The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity28, 787–798 (2008).
  • Reits E, Neijssen J, Herberts C et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity20, 495–506 (2004).
  • Yewdell JW. The seven dirty little secrets of major histocompatibility complex class I antigen processing. Immunol. Rev.207, 8–18 (2005).
  • Rivoltini L, Castelli C, Carrabba M et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J. Immunol.171, 3467–3474 (2003).
  • Wang XY, Kazim L, Repasky EA, Subjeck JR. Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. Int. J. Cancer105, 226–231 (2003).
  • Enomoto Y, Bharti A, Khaleque AA et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell–tumor fusion cells. J. Immunol.177, 5946–5955 (2006).
  • Nicchitta CV, Carrick DM, Baker-Lepain JC. The messenger and the message: Gp96 (GRP94)–peptide interactions in cellular immunity. Cell Stress Chaperones9, 325–331 (2004).
  • Rosser MF, Trotta BM, Marshall MR, Berwin B, Nicchitta CV. Adenosine nucleotides and the regulation of GRP94–client protein interactions. Biochemistry43, 8835–8845 (2004).
  • Calderwood SK, Theriault J, Gray PJ, Gong J. Cell surface receptors for molecular chaperones. Methods43, 199–206 (2007).
  • Jockheck-Clark AR, Bowers EV, Totonchy MB et al. Re-examination of CD91 function in GRP94 (glycoprotein 96) surface binding, uptake, and peptide cross-presentation. J. Immunol.185, 6819–6830 (2010).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17, 353–362 (2002).
  • Theriault JR, Adachi H, Calderwood SK. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J. Immunol.177, 8604–8611 (2006).
  • Pluddemann A, Hoe JC, Makepeace K, Moxon ER, Gordon S. The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. PLoS Pathog.5, e1000297 (2009).
  • Pluddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods43, 207–217 (2007).
  • Gray PJ Jr, Stevenson MA, Calderwood SK. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res.67, 11942–11950 (2007).
  • Cambi A, Figdor C. Necrosis: C-type lectins sense cell death. Curr. Biol.19, R375–R378 (2009).
  • den Dunnen J, Gringhuis SI, Geijtenbeek TB. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother.58, 1149–1157 (2009).
  • Dominguez-Soto A, Corbi AL. Myeloid dendritic cell lectins and their role in immune responses. Curr. Opin. Investig. Drugs8, 910–920 (2007).
  • Graham LM, Brown GD. The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine48, 148–155 (2009).
  • Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat. Immunol.7, 1258–1265 (2006).
  • Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol.89, 216–224 (2010).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins Gp96, Hsp90, Hsp70, and calreticulin. Immunity14, 303–313 (2001).
  • Suzuki E, Nakayama M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp. Cell Res.313, 3729–3742 (2007).
  • Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell104, 43–56 (2001).
  • Asea A, Kraeft SK, Kurt-Jones EA et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med.6, 435–442 (2000).
  • Vabulas RM, Ahmad-Nejad P, Ghose S et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem.277, 15107–15112 (2002).
  • Vabulas RM, Wagner H. Toll-like receptor-dependent activation of antigen presenting cells by Hsp60, Gp96 and Hsp70. In: Molecular Chaperones & Cell Signalling. Henderson B, Pockley AG (Eds). Cambridge University Press, Cambridge, UK, 113–133 (2005).
  • Reis e Sousa C. Dendritic cells in a mature age. Nat. Rev. Immunol.6, 476–483 (2006).
  • Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev.229, 12–26 (2009).
  • Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages. J. Biol. Chem.278, 174–179 (2003).
  • Henderson B, Calderwood SK, Coates AR et al. Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones15(2), 123–141 (2009).
  • Bendz H, Ruhland SC, Pandya MJ et al. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J. Biol. Chem.282, 31688–31702 (2007).
  • Gong J, Zhu B, Murshid A et al. T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. J. Immunol.183(5), 3092–3098 (2009).
  • Massa C, Melani C, Colombo MP. Chaperon and adjuvant activity of Hsp70: different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Res.65, 7942–7949 (2005).
  • Pido-Lopez J, Whittall T, Wang Y et al. Stimulation of cell surface CCR5 and CD40 molecules by their ligands or by HSP70 up-regulates APOBEC3G expression in CD4+ T cells and dendritic cells. J. Immunol.178, 1671–1679 (2007).
  • Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70–peptide complexes. J. Cell Biol.158, 1277–1285 (2002).
  • Binder RJ. CD40-independent engagement of mammalian Hsp70 by antigen-presenting cells. J. Immunol.182, 6844–6850 (2009).
  • Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M et al. Heat shock protein 60 activates B cells via the TLR4–MyD88 pathway. J. Immunol.175, 3594–3602 (2005).
  • Jeannin P, Bottazzi B, Sironi M et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity22, 551–560 (2005).
  • Quintana FJ, Cohen IR. Heat shock proteins regulate inflammation by both molecular and network cross-reactivity. Cambridge University Press, Cambridge, UK (2005).
  • Kurotaki T, Tamura Y, Ueda G et al. Efficient cross-presentation by heat shock protein 90–peptide complex-loaded dendritic cells via an endosomal pathway. J. Immunol.179, 1803–1813 (2007).
  • Arnold-Schild D, Hanau D, Spehner D et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757–3760 (1999).
  • Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein Gp96. J. Exp. Med.182, 885–889 (1995).
  • Nicchitta CV. Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/Gp96. Curr. Opin. Immunol.10, 103–109 (1998).
  • Kottke T, Pulido J, Thompson J et al. Antitumor immunity can be uncoupled from autoimmunity following heat shock protein 70-mediated inflammatory killing of normal pancreas. Cancer Res.69(19), 7767–7774 (2009).
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001).
  • Ortmann B, Copeman J, Lehner PJ et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science277, 1306–1309 (1997).
  • Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol.80, 1–70 (2002).
  • Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity5, 103–114 (1996).
  • Solheim JC, Carreno BM, Hansen TH. Are transporter associated with antigen processing (TAP) and tapasin class I MHC chaperones? J. Immunol.158, 541–543 (1997).
  • Rock KL, Farfan-Arribas DJ, Shen L. Proteases in MHC class I presentation and cross-presentation. J. Immunol.184, 9–15 (2010).
  • Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev.207, 166–183 (2005).
  • Ackerman AL, Giodini A, Cresswell P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity25, 607–617 (2006).
  • Wang XY, Facciponte J, Chen X, Subjeck JR, Repasky EA. Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res.67, 4996–5002 (2007).
  • Doody AD, Kovalchin JT, Mihalyo MA et al. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J. Immunol.172, 6087–6092 (2004).
  • Matsutake T, Sawamura T, Srivastava PK. High efficiency CD91- and LOX-1-mediated re-presentation of Gp96-chaperoned peptides by MHC II molecules. Cancer Immun.10, 7 (2010).
  • Bennett SR, Carbone FR, Karamalis F et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998).
  • Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med.186, 65–70 (1997).
  • Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. Nat. Rev. Immunol.10, 403–414 (2010).
  • Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett.579, 1951–1960 (2005).
  • Blasi C. The autoimmune origin of atherosclerosis. Atherosclerosis201, 17–32 (2008).
  • Puga Yung GL, Fidler M, Albani E et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS ONE4, e7714 (2009).
  • Rajaiah R, Moudgil KD. Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun. Rev.8, 388–393 (2009).
  • van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol.5, 318–330 (2005).
  • Wieten L, Berlo SE, Ten Brink CB et al. IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS ONE4, e4186 (2009).
  • Alard JE, Dueymes M, Youinou P, Jamin C. Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases. Autoimmun. Rev.6, 438–443 (2007).
  • Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol.11, 119–130 (2010).
  • Chandawarkar RY, Wagh MS, Srivastava PK. The dual nature of specific immunological activity of tumor-derived Gp96 preparations. J. Exp. Med.189, 1437–1442 (1999).
  • Liu Z, Li X, Qiu L et al. Treg suppress CTL responses upon immunization with HSP Gp96. Eur. J. Immunol.39, 3110–3120 (2009).
  • Daniels GA, Sanchez-Perez L, Diaz RM et al. A simple method to cure established tumors by inflammatory killing of normal cells. Nat. Biotechnol.22, 1125–1132 (2004).
  • Calderwood SK. Chaperones and slow death – a recipe for tumor immunotherapy. Trends Biotechnol.23, 57–59 (2005).
  • Sanchez-Perez L, Kottke T, Daniels GA et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas. J. Immunol.177, 4168–4177 (2006).
  • Kottke T, Sanchez-Perez L, Diaz RM et al. Induction of Hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res.67, 11970–11979 (2007).
  • Van Eden W, Wick G, Albani S, Cohen I. Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann. NY Acad. Sci.1113, 217–237 (2007).
  • Massa C, Guiducci C, Arioli I et al. Enhanced efficacy of tumor cell vaccines transfected with secretable Hsp70. Cancer Res.64, 1502–1508 (2004).
  • Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY. Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood107, 1636–1642 (2006).
  • Wang R, Town T, Gokarn V, Flavell RA, Chandawarkar RY. HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J. Surg. Res.136, 58–69 (2006).
  • Todryk S, Melcher AA, Hardwick N et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol.163, 1398–1408 (1999).
  • Gong J, Koido S, Calderwood SK. Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev. Vaccines7(7), 1055–1068 (2008).
  • Kashyap V, Rezende NC, Scotland KB et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev.18, 1093–1108 (2009).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001).
  • Wang XY, Sun X, Chen X et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J. Immunol.184, 6309–6319 (2010).
  • Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J. Biol. Chem.279, 51250–51257 (2004).
  • Facciponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur. J. Immunol.37, 2268–2279 (2007).
  • Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol. Biol. Cell15, 3542–3552 (2004).
  • Srivastava PK, Callahan MK, Mauri MM. Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin. Biol. Ther.9, 179–186 (2009).
  • Weng D, Calderwood SK, Gong J. Preparation of a heat shock protein 70-based vaccine from DC-tumor fusion cells. Methods Mol. Biol.787, 255–265 (2011).
  • Zeng Y, Graner MW, Katsanis E. Chaperone-rich cell lysates, immune activation and tumor vaccination. Cancer Immunol. Immunother.55, 329–338 (2006).
  • Manjili MH, Wang XY, Chen X et al. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J. Immunol.171, 4054–4061 (2003).
  • Asea A, Rehli M, Kabingu E et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem.277, 15028–15034 (2002).
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002).
  • Manegold C, Gravenor D, Woytowitz D et al. Randomized Phase II trial of a Toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J. Clin. Oncol.26, 3979–3986 (2008).
  • Buhe V, Guerrier T, Youinou P, Berthou C, Loisel S. CpG ODN enhances the efficacy of rituximab in non-Hodgkin lymphoma. Ann. NY Acad. Sci.1173, 858–864 (2009).
  • Saha A, Bhattacharya-Chatterjee M, Foon KA, Celis E, Chatterjee SK. Stimulatory effects of CpG oligodeoxynucleotide on dendritic cell-based immunotherapy of colon cancer in CEA/HLA-A2 transgenic mice. Int. J. Cancer124, 877–888 (2009).
  • Zhou S, Kawakami S, Yamashita F, Hashida M. Intranasal administration of CpG DNA lipoplex prevents pulmonary metastasis in mice. Cancer Lett.287, 75–81 (2010).
  • Warger T, Hilf N, Rechtsteiner G et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem.281, 22545–22553 (2006).
  • Okuya K, Tamura Y, Saito K et al. Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J. Immunol.184, 7092–7099 (2010).
  • Callahan MK, Wolchok JD, Allison JP. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin. Oncol.37, 473–484 (2010).
  • Jaber SH, Cowen EW, Haworth LR et al. Skin reactions in a subset of patients with stage IV melanoma treated with anti-cytotoxic T-lymphocyte antigen 4 monoclonal antibody as a single agent. Arch. Dermatol.142, 166–172 (2006).
  • Tarhini AA, Kirkwood JM. CTLA-4-blocking immunotherapy with ipilimumab for advanced melanoma. Oncology (Williston Park)24, 1302, 1304 (2010).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144, 646–674 (2010).
  • Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev.23, 2563–2577 (2009).
  • Visvader JE, Smith GH. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb. Perspect. Biol. DOI: 10.1101/cshperspect.a004879 (2011) (Epub ahead of print).
  • Schatton T, Frank MH. Antitumor immunity and cancer stem cells. Ann. NY Acad. Sci.1176, 154–169 (2009).
  • Schatton T, Schutte U, Frank NY et al. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res.70, 697–708 (2010).
  • Demaria S, Bhardwaj N, McBride WH, Formenti SC. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys.63, 655–666 (2005).
  • McBride WH, Chiang CS, Olson JL et al. A sense of danger from radiation. Radiat. Res.162, 1–19 (2004).
  • Reits EA, Hodge JW, Herberts CA et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med.203, 1259–1271 (2006).
  • Lugade AA, Sorensen EW, Gerber SA et al. Radiation-induced IFN-γ production within the tumor microenvironment influences antitumor immunity. J. Immunol.180, 3132–3139 (2008).
  • Obeid M, Panaretakis T, Joza N et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ.14, 1848–1850 (2007).
  • Panaretakis T, Joza N, Modjtahedi, N et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ.15, 1499–1509 (2008).
  • Tesniere A, Apetoh L, Ghiringhelli F et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol.20, 504–511 (2008).
  • Berwin B, Hart JP, Rice S et al. Scavenger receptor-A mediates Gp96/GRP94 and calreticulin internalization by antigen-presenting cells. Embo J.22, 6127–6136 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.