399
Views
66
CrossRef citations to date
0
Altmetric
Review

Developments in virus-like particle-based vaccines for infectious diseases and cancer

, , &
Pages 1569-1583 | Published online: 09 Jan 2014

References

  • Amanna IJ, Slifka MK. Wanted, dead or alive: new viral vaccines. Antiviral Res.84(2), 119–130 (2009).
  • Furione M, Guillot S, Otelea D, Balanant J, Candrea A, Crainic R. Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology196(1), 199–208 (1993).
  • Georgescu MM, Balanant J, Macadam A et al. Evolution of the Sabin type 1 poliovirus in humans: characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J. Virol.71(10), 7758–7768 (1997).
  • Nkowane BM, Wassilak SG, Orenstein WA et al. Vaccine-associated paralytic poliomyelitis. United States: 1973 through 1984. JAMA257(10), 1335–1340 (1987).
  • Nathanson N, Langmuir AD. The Cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States during the Spring of 1955. II. Relationship of poliomyelitis to Cutter vaccine. 1963. Am. J. Epidemiol.142(2), 109–140 (1995).
  • Fulginiti VA, Eller JJ, Downie AW, Kempe CH. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA202(12), 1075–1080 (1967).
  • Kim HW, Canchola JG, Brandt CD et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol.89(4), 422–434 (1969).
  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B vaccine from recombinant yeast. Nature307(5947), 178–180 (1984).
  • Yap I, Guan R, Chan SH. Recombinant DNA hepatitis B vaccine containing Pre-S components of the HBV coat protein – a preliminary study on immunogenicity. Vaccine10(7), 439–442 (1992).
  • Koutsky LA, Ault KA, Wheeler CM et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med.347, 1645–1651 (2002).
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA89, 12180–12184 (1992).
  • Higano CS, Schellhammer PF, Small EJ et al. Integrated data from 2 randomized, double-blind, placebo-controlled, Phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer115(16), 3670–3679 (2009).
  • Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5), 411–422 (2010).
  • Ross AL, Brave A, Scarlatti G, Manrique A, Buonaguro L. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. Lancet Infect. Dis.10(5), 305–316 (2010).
  • Aurisicchio L, Ciliberto G. Patented cancer vaccines: the promising leads. Expert Opin. Ther. Pat.20(5), 647–660 (2010).
  • Itoh K, Yamada A, Mine T, Noguchi M. Recent advances in cancer vaccines: an overview. Jpn J. Clin. Oncol.39(2), 73–80 (2009).
  • Zepp F. Principles of vaccine design-Lessons from nature. Vaccine28(Suppl. 3), C14–C24 (2010).
  • Gheysen D, Jacobs E, de Foresta F et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell59, 103–112 (1989).
  • Delchambre M, Gheysen D, Thines D et al. The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J.8(9), 2653–2660 (1989).
  • Miyanohara A, Imamura T, Araki M, Sugawara K, Ohtomo N, Matsubara K. Expression of hepatitis B virus core antigen gene in Saccharomyces cerevisiae: synthesis of two polypeptides translated from different initiation codons. J. Virol.59, 176–180 (1986).
  • Takamura S, Niikura M, Li TC et al. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther.11(7), 628–635 (2004).
  • Malboeuf CM, Simon DA, Lee YE et al. Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine25(17), 3270–3276 (2007).
  • Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like particles. Nucleic Acids Res.26(5), 1317–1323 (1998).
  • Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev. Vaccines8(10), 1379–1398 (2009).
  • Xu YF, Zhang YQ, Xu XM, Song GX. Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes. Arch. Virol.151(11), 2133–2148 (2006).
  • Blumberg BS, Alter HJ, Visnich S. A ‘new’ antigen in leukemia sera. JAMA191, 541–546 (1965).
  • Brady JN, Consigli RA. Chromatographic separation of the polyoma virus proteins and renaturation of the isolated VP1 major capsid protein. J. Virol.27(2), 436–442 (1978).
  • Buonaguro L, Tornesello ML, Buonaguro FM. Virus-like particles as particulate vaccines. Curr. HIV Res.8(4), 299–309 (2010).
  • Fernandez-San MA, Ortigosa SM, Hervas-Stubbs S et al. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J.6(5), 427–441 (2008).
  • Lopez de Turiso JA, Cortes E, Martinez C et al. Recombinant vaccine for canine parvovirus in dogs. J. Virol.66(5), 2748–2753 (1992).
  • Brautigam S, Snezhkov E, Bishop DH. Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology192(2), 512–524 (1993).
  • Kozlovska TM, Cielens I, Dreilinna D et al. Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene137(1), 133–137 (1993).
  • Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo CJ, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J. Mol. Biol.380(1), 252–263 (2008).
  • French TJ, Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J. Virol.64(4), 1530–1536 (1990).
  • Yamshchikov GV, Ritter GD, Vey M, Compans RW. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology214, 50–58 (1995).
  • Baumert TF, Ito S, Wong DT, Liang TJ. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J. Virol.72, 3827–3836 (1998).
  • Kang SM, Song JM, Quan FS, Compans RW. Influenza vaccines based on virus-like particles. Virus Res.143(2), 140–146 (2009).
  • Buonaguro L, Buonaguro FM, Tornesello ML et al. High efficient production of Pr55gag virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. Antiviral Res.49, 35–47 (2001).
  • Wagner R, Deml L, Fliessbach H, Wanner G, Wolf H. Assembly and extracellular release of chimeric HIV-1 Pr55gag retrovirus-like particles. Virology200, 162–175 (1994).
  • Deml L, Kratochwil G, Osterrieder N, Knuchel R, Wolf H, Wagner R. Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55gag virus-like particles by an Epstein–Barr virus gp220/350-derived transmembrane domain. Virology235, 10–25 (1997).
  • Crooks ET, Moore PL, Franti M et al. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology366(2), 245–262 (2007).
  • Wang BZ, Liu W, Kang SM et al. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J. Virol.81(20), 10869–10878 (2007).
  • Tobin GJ, Li GH, Fong SE, Nagashima K, Gonda MA. Chimeric HIV-1 virus-like particles containing gp120 epitopes as a result of a ribosomal frameshift elicit gag- and SU-specific murine cytotoxic T-lymphocyte activities. Virology236, 307–315 (1997).
  • Griffiths JC, Harris SJ, Layton GT et al. Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: induction of cytotoxic T-cell and humoral responses by a Gag:V3 fusion. J. Virol.67, 3191–3198 (1993).
  • Dale CJ, Liu XS, De Rose R et al. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: immunogenicity and protective efficacy in macaques. Virology301, 176–187 (2002).
  • Weber J, Cheinsong-Popov R, Callow D et al. Immunogenicity of the yeast recombinant p17/p24:Ty virus-like particles (p24-VLP) in healthy volunteers. Vaccine13(9), 831–834 (1995).
  • Ulrich R, Nassal M, Meisel H, Kruger DH. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv. Virus Res.50, 141–182 (1998).
  • Kratz PA, Bottcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl Acad. Sci. USA96(5), 1915–1920 (1999).
  • Halsey RJ, Tanzer FL, Meyers A et al. Chimaeric HIV-1 subtype C Gag molecules with large in-frame C-terminal polypeptide fusions form virus-like particles. Virus Res.133(2), 259–268 (2008).
  • Schmitz N, Dietmeier K, Bauer M et al. Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy. J. Exp. Med.206(9), 1941–1955 (2009).
  • Moron VG, Rueda P, Sedlik C, Leclerc C. In vivo, dendritic cells can cross-present virus-like particles using an endosome-to-cytosol pathway. J. Immunol.171, 2242–2250 (2003).
  • Moron G, Rueda P, Casal I, Leclerc C. CD8α- CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8α and CD205 molecules. J. Exp. Med.195(10), 1233–1245 (2002).
  • Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol.82(5), 506–516 (2004).
  • Buonaguro L, Tornesello ML, Tagliamonte M et al. Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivo T-cell responses. J. Virol.80, 9134–9143 (2006).
  • Buonaguro L, Tornesello ML, Gallo RC, Marincola FM, Lewis GK, Buonaguro FM. Th2 polarization in peripheral blood mononuclear cells from human immunodeficiency virus (HIV)-infected subjects, as activated by HIV virus-like particles. J. Virol.83(1), 304–313 (2009).
  • Tsunetsugu-Yokota Y, Morikawa Y, Isogai M et al. Yeast-derived human immunodeficiency virus type 1 p55gag virus-like particles activate dendritic cells (DCs) and induce perforin expression in gag-specific CD8+ T cells by cross-presentation of DCs. J. Virol.77, 10250–10259 (2003).
  • Fausch SC, Da Silva DM, Kast WM. Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res.63, 3478–3482 (2003).
  • Lenz P, Thompson CD, Day PM, Bacot SM, Lowy DR, Schiller JT. Interaction of papillomavirus virus-like particles with human myeloid antigen-presenting cells. Clin. Immunol.106, 231–237 (2003).
  • Sailaja G, Skountzou I, Quan FS, Compans RW, Kang SM. Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology362(2), 331–341 (2007).
  • Bachmann MF, Kundig TM, Kalberer CP, Hengartner H, Zinkernagel RM. Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses. J. Virol.67(7), 3917–3922 (1993).
  • Braciale TJ, Morrison LA, Sweetser MT, Sambrook J, Gething MJ, Braciale VL. Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol. Rev.98, 95–114 (1987).
  • Bachmann MF, Lutz MB, Layton GT et al. Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur. J. Immunol.26(11), 2595–2600 (1996).
  • Ruedl C, Schwarz K, Jegerlehner A, Storni T, Manolova V, Bachmann MF. Virus-like particles as carriers for T-cell epitopes: limited inhibition of T-cell priming by carrier-specific antibodies. J. Virol.79(2), 717–724 (2005).
  • Ruedl C, Storni T, Lechner F, Bachi T, Bachmann MF. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur. J. Immunol.32(3), 818–825 (2002).
  • Paliard X, Liu Y, Wagner R, Wolf H, Baenzinger J, Walker CM. Priming of strong, broad, and long-lived HIV type 1 p55gag- specific CD8+ cytotoxic T cells after administration of a virus-like particle vaccine in rhesus macaques. AIDS Res. Hum. Retroviruses16, 273–282 (2000).
  • Murata K, Lechmann M, Qiao M, Gunji T, Alter HJ, Liang TJ. Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc. Natl Acad. Sci. USA100(11), 6753–6758 (2003).
  • Schirmbeck R, Bohm W, Reimann J. Virus-like particles induce MHC class I-restricted T-cell responses. Lessons learned from the hepatitis B small surface antigen. Intervirology39(1–2), 111–119 (1996).
  • Buonaguro L, Racioppi L, Tornesello ML et al. Induction of neutralizing antibodies and CTLs in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A (HIV-VLPAs). Antiviral Res.54, 189–201 (2002).
  • Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J. Virol.79, 7059–7067 (2005).
  • Buonaguro L, Devito C, Tornesello ML et al. DNA-VLP prime-boost intra-nasal immunization induces cellular and humoral anti-HIV-1 systemic and mucosal immunity with cross-clade neutralizing activity. Vaccine25(32), 5968–5977 (2007).
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38(5), 1404–1413 (2008).
  • Hinton HJ, Jegerlehner A, Bachmann MF. Pattern recognition by B cells: the role of antigen repetitiveness versus Toll-like receptors. Curr. Top. Microbiol. Immunol.319, 1–15 (2008).
  • Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science262(5138), 1448–1451 (1993).
  • Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu. Rev. Immunol.15, 235–270 (1997).
  • Zhang S, Cubas R, Li M, Chen C, Yao Q. Virus-like particle vaccine activates conventional B2 cells and promotes B cell differentiation to IgG2a producing plasma cells. Mol. Immunol.46(10), 1988–2001 (2009).
  • Aricò E, Wang E, Tornesello ML et al. Immature monocyte derived dendritic cells gene expression profile in response to virus-like particles stimulation. J. Transl. Med.3, 45 (2005).
  • Buonaguro L, Monaco A, Arico E et al. Gene expression profile of peripheral blood mononuclear cells in response to HIV-VLPs stimulation. BMC Bioinformatics9(Suppl. 2), S5 (2008).
  • Monaco A, Marincola FM, Sabatino M et al. Molecular immune signatures of HIV-1 vaccines in human PBMCs. FEBS Lett.583(18), 3004–3008 (2009).
  • Frank I, Piatak M Jr, Stoessel H et al. Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J. Virol.76(6), 2936–2951 (2002).
  • Bosio CM, Moore BD, Warfield KL et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology326(2), 280–287 (2004).
  • Yang R, Martinez Murillo F, Cui H et al. Papillomavirus-Like Particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J. Virol.78, 11152–11160 (2004).
  • Freer G, Matteucci D. Influence of dendritic cells on viral pathogenicity. PLoS.Pathog.5(7), e1000384 (2009).
  • Sevilla N, McGavern DB, Teng C, Kunz S, Oldstone MB. Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J. Clin. Invest.113(5), 737–745 (2004).
  • Hodges A, Sharrocks K, Edelmann M et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat. Immunol.8(6), 569–577 (2007).
  • Gonzalez PA, Prado CE, Leiva ED et al. Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells. Proc. Natl Acad. Sci. USA105(39), 14999–15004 (2008).
  • Saito K, Ait-Goughoulte M, Truscott SM et al. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J. Virol.82(7), 3320–3328 (2008).
  • Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol. Rev.220, 214–224 (2007).
  • Storni T, Lechner F, Erdmann I et al. Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles. J. Immunol.168(6), 2880–2886 (2002).
  • Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol.172(3), 1777–1785 (2004).
  • Skountzou I, Quan FS, Gangadhara S et al. Incorporation of glycosylphosphatidylinositol-anchored granulocyte-macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J. Virol.81(3), 1083–1094 (2007).
  • Wang BZ, Quan FS, Kang SM, Bozja J, Skountzou I, Compans RW. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol.82(23), 11813–11823 (2008).
  • Schwarz K, Storni T, Manolova V et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur. J. Immunol.33(6), 1465–1470 (2003).
  • Sun S, Rao NL, Venable J, Thurmond R, Karlsson L. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm. Allergy Drug Targets6(4), 223–235 (2007).
  • Krugman S, Giles JP, Hammond J. Viral hepatitis, type B (MS-2 strain) prevention with specific hepatitis B immune serum globulin. JAMA218(11), 1665–1670 (1971).
  • Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia, Down’s Syndrome and hepatitis. Nature218(5146), 1057–1059 (1968).
  • Wampler DE, Lehman ED, Boger J, McAleer WJ, Scolnick EM. Multiple chemical forms of hepatitis B surface antigen produced in yeast. Proc. Natl Acad. Sci. USA82(20), 6830–6834 (1985).
  • Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature298(5872), 347–350 (1982).
  • Chang MH, Chen CJ, Lai MS et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med.336(26), 1855–1859 (1997).
  • Wichajarn K, Kosalaraksa P, Wiangnon S. Incidence of hepatocellular carcinoma in children in Khon Kaen before and after national hepatitis B vaccine program. Asian Pac. J. Cancer Prev.9(3), 507–509 (2008).
  • Lanier AP, Holck P, Ehrsam DG, Key C. Childhood cancer among Alaska Natives. Pediatrics112(5), e396 (2003).
  • Huang Z, Elkin G, Maloney BJ et al. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine23(15), 1851–1858 (2005).
  • Pniewski T, Kapusta J, Bociag P et al. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J. Appl. Genet.52(2), 125–136 (2011).
  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng.103(4), 706–714 (2009).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun.72(11), 6519–6527 (2004).
  • Stahl SJ, Murray K. Immunogenicity of peptide fusions to hepatitis B virus core antigen. Proc. Natl Acad. Sci. USA86(16), 6283–6287 (1989).
  • Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology44(2–3), 98–114 (2001).
  • Mihailova M, Boos M, Petrovskis I et al. Recombinant virus-like particles as a carrier of B- and T-cell epitopes of hepatitis C virus (HCV). Vaccine24(20), 4369–4377 (2006).
  • Kazaks A, Balmaks R, Voronkova T, Ose V, Pumpens P. Melanoma vaccine candidates from chimeric hepatitis B core virus-like particles carrying a tumor-associated MAGE-3 epitope. Biotechnol. J.3(11), 1429–1436 (2008).
  • Geldmacher A, Skrastina D, Borisova G et al. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine23(30), 3973–3983 (2005).
  • Walker A, Skamel C, Vorreiter J, Nassal M. Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J. Biol. Chem.283(48), 33508–33515 (2008).
  • Nassal M, Skamel C, Vogel M et al. Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int. J. Med. Microbiol.298(1–2), 135–142 (2008).
  • Maclean J, Koekemoer M, Olivier AJ et al. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen. Virol.88(Pt 5), 1460–1469 (2007).
  • Sasagawa T, Pushko P, Steers G et al. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology206(1), 126–135 (1995).
  • Lenzi P, Scotti N, Alagna F et al. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res.17(6), 1091–1102 (2008).
  • Christensen ND, Reed CA, Cladel NM, Han R, Kreider JW. Immunization with viruslike particles induces long-term protection of rabbits against challenge with cottontail rabbit papillomavirus. J. Virol.70(2), 960–965 (1996).
  • Kirnbauer R, Chandrachud LM, O’Neil BW et al. Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology219(1), 37–44 (1996).
  • Suzich JA, Ghim SJ, Palmer-Hill FJ et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl Acad. Sci. USA92(25), 11553–11557 (1995).
  • Zhang LF, Zhou J, Chen S et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine18(11–12), 1051–1058 (2000).
  • Dupuy C, Buzoni-Gatel D, Touze A, Bout D, Coursaget P. Nasal immunization of mice with human papillomavirus type 16 (HPV-16) virus-like particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymphocytes in vaginal draining lymph nodes. J. Virol.73(11), 9063–9071 (1999).
  • Brown DR, Bryan JT, Schroeder JM et al. Neutralization of human papillomavirus type 11 (HPV-11) by serum from women vaccinated with yeast-derived HPV-11 L1 virus-like particles: correlation with competitive radioimmunoassay titer. J. Infect. Dis.184(9), 1183–1186 (2001).
  • Evans TG, Bonnez W, Rose RC et al. A Phase 1 study of a recombinant viruslike particle vaccine against human papillomavirus type 11 in healthy adult volunteers. J. Infect. Dis.183(10), 1485–1493 (2001).
  • Harro CD, Pang YY, Roden RB et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J. Natl Cancer Inst.93(4), 284–292 (2001).
  • Harper DM, Franco EL, Wheeler CM et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367(9518), 1247–1255 (2006).
  • Paavonen J, Jenkins D, Bosch FX et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a Phase III double-blind, randomised controlled trial. Lancet369(9580), 2161–2170 (2007).
  • Villa LL, Costa RL, Petta CA et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br. J. Cancer95(11), 1459–1466 (2006).
  • The FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med.356(19), 1915–1927 (2007).
  • Giannini SL, Hanon E, Moris P et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine24(33–34), 5937–5949 (2006).
  • Olsson SE, Villa LL, Costa RL et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine25(26), 4931–4939 (2007).
  • Paavonen J, Naud P, Salmeron J et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet374(9686), 301–314 (2009).
  • Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet369(9576), 1861–1868 (2007).
  • Munoz N, Kjaer SK, Sigurdsson K et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J. Natl Cancer Inst.102(5), 325–339 (2010).
  • Roden RB, Yutzy WH, Fallon R, Inglis S, Lowy DR, Schiller JT. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology270(2), 254–257 (2000).
  • Embers ME, Budgeon LR, Pickel M, Christensen ND. Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein. J. Virol.76(19), 9798–9805 (2002).
  • Gambhira R, Karanam B, Jagu S et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J. Virol.81(24), 13927–13931 (2007).
  • Gambhira R, Jagu S, Karanam B et al. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J. Virol.81(21), 11585–11592 (2007).
  • Pastrana DV, Gambhira R, Buck CB et al. Cross-neutralization of cutaneous and mucosal papillomavirus types with anti-sera to the amino terminus of L2. Virology337(2), 365–372 (2005).
  • Varsani A, Williamson AL, de Villiers D, Becker I, Christensen ND, Rybicki EP. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J. Virol.77(15), 8386–8393 (2003).
  • Kawana K, Yasugi T, Kanda T et al. Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine21(27–30), 4256–4260 (2003).
  • Schellenbacher C, Roden R, Kirnbauer R. Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J. Virol.83(19), 10085–10095 (2009).
  • Slupetzky K, Gambhira R, Culp TD et al. A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine25(11), 2001–2010 (2007).
  • Caldeira JC, Medford A, Kines RC et al. Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7. Vaccine28(27), 4384–4393 (2010).
  • Jiang X, Wang M, Graham DY, Estes MK. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol.66(11), 6527–6532 (1992).
  • Santi L, Batchelor L, Huang Z et al. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine26(15), 1846–1854 (2008).
  • Ball JM, Hardy ME, Atmar RL, Conner ME, Estes MK. Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. J. Virol.72(2), 1345–1353 (1998).
  • Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK. Recombinant Norwalk virus-like particles administered intranasally to mice induce systemic and mucosa (fecal and vaginal) immune responses. J. Virol.75, 9713–9722 (2001).
  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl Acad. Sci. USA93(11), 5335–5340 (1996).
  • Zhang X, Buehner NA, Hutson AM, Estes MK, Mason HS. Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnol. J.4(4), 419–432 (2006).
  • Velasquez LS, Shira S, Berta AN et al. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine29(32), 5221–5231 (2011).
  • Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin. Vaccine Immunol.17(12), 1850–1858 (2010).
  • Ball JM, Graham DY, Opekun AR, Gilger MA, Guerrero RA, Estes MK. Recombinant Norwalk virus-like particles given orally to volunteers: Phase I study. Gastroenterology117(1), 40–48 (1999).
  • Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin. Immunol.108(3), 241–247 (2003).
  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis.182(1), 302–305 (2000).
  • Latham T, Galarza JM. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol.75(13), 6154–6165 (2001).
  • Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine23(50), 5751–5759 (2005).
  • Bright RA, Carter DM, Daniluk S et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine25(19), 3871–3878 (2007).
  • Quan FS, Huang C, Compans RW, Kang SM. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol.81(7), 3514–3524 (2007).
  • Matassov D, Cupo A, Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol.20(3), 441–452 (2007).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One.3(1), e1501 (2008).
  • Mahmood K, Bright RA, Mytle N et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine26(42), 5393–5399 (2008).
  • Guo L, Lu X, Kang SM, Chen C, Compans RW, Yao Q. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology313(2), 502–513 (2003).
  • Szecsi J, Boson B, Johnsson P et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol. J.3, 70 (2006).
  • Haynes JR, Dokken L, Wiley JA et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine27(4), 530–541 (2009).
  • Galarza JM, Latham T, Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol.18(1), 244–251 (2005).
  • Koletzki D, Lundkvist A, Sjolander KB et al. Puumala (PUU) hantavirus strain differences and insertion positions in the hepatitis B virus core antigen influence B-cell immunogenicity and protective potential of core-derived particles. Virology276(2), 364–375 (2000).
  • De FM, Martens W, Smet A et al. Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine26(51), 6503–6507 (2008).
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10), 1157–1163 (1999).
  • Pumpens P, Razanskas R, Pushko P et al. Evaluation of HBs, HBc, and frCP virus-like particles for expression of human papillomavirus 16 E7 oncoprotein epitopes. Intervirology45(1), 24–32 (2002).
  • Bisht H, Chugh DA, Raje M, Swaminathan SS, Khanna N. Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. J. Biotechnol.99(2), 97–110 (2002).
  • Eckhart L, Raffelsberger W, Ferko B et al. Immunogenic presentation of a conserved gp41 epitope of human immunodeficiency virus type 1 on recombinant surface antigen of hepatitis B virus. J. Gen. Virol.77( Pt 9), 2001–2008 (1996).
  • Schlienger K, Mancini M, Riviere Y, Dormont D, Tiollais P, Michel ML. Human immunodeficiency virus type 1 major neutralizing determinant exposed on hepatitis B surface antigen particles is highly immunogenic in primates. J. Virol.66(4), 2570–2576 (1992).
  • Netter HJ, Macnaughton TB, Woo WP, Tindle R, Gowans EJ. Antigenicity and immunogenicity of novel chimeric hepatitis B surface antigen particles with exposed hepatitis C virus epitopes. J. Virol.75(5), 2130–2141 (2001).
  • Woo WP, Doan T, Herd KA, Netter HJ, Tindle RW. Hepatitis B surface antigen vector delivers protective cytotoxic T-lymphocyte responses to disease-relevant foreign epitopes. J. Virol.80(8), 975–3984 (2006).
  • Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol.169(11), 6120–6126 (2002).
  • Maurer P, Jennings GT, Willers J et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur. J. Immunol.35(7), 2031–2040 (2005).
  • Cornuz J, Zwahlen S, Jungi WF et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One3(6), e2547 (2008).
  • Ambuhl PM, Tissot AC, Fulurija A et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and Phase I safety and immunogenicity. J. Hypertens.25(1), 63–72 (2007).
  • Chackerian B, Rangel M, Hunter Z, Peabody DS. Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine24(37–39), 6321–6331 (2006).
  • Spohn G, Keller I, Beck M, Grest P, Jennings GT, Bachmann MF. Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur. J. Immunol.38(3), 877–887 (2008).
  • Fiers W, De Filette M, El Bakkouri K et al. M2e-based universal influenza A vaccine. Vaccine27(45), 6280–6283 (2009).
  • Peters BS, Cheingsong-Popov R, Callow D et al. A pilot Phase II study of the safety and immunogenicity of HIV p17/p24:VLP (p24-VLP) in asymptomatic HIV seropositive subjects. J. Infect.35, 231–235 (1997).
  • Lisziewicz J, Bakare N, Lori F. Therapeutic vaccination for future management of HIV/AIDS. Vaccine21(7–8), 620–623 (2003).
  • Smith D, Gow I, Colebunders R et al. Therapeutic vaccination (p24-VLP) of patients with advanced HIV-1 infection in the pre-HAART era does not alter CD4 cell decline. HIV Med.2(4), 272–275 (2001).
  • Schodel F, Wirtz R, Peterson D et al. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. J. Exp. Med.180(3), 1037–1046 (1994).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Aide P, Dobano C, Sacarlal J et al. Four year immunogenicity of the RTS,S/AS02(A) malaria vaccine in Mozambican children during a Phase IIb trial. Vaccine29(35), 6059–6067 (2011).
  • French TJ, Marshall JJ, Roy P. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J. Virol.64(12), 5695–5700 (1990).
  • Belyaev AS, Roy P. Development of baculovirus triple and quadruple expression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells. Nucleic Acids Res.21(5), 1219–1223 (1993).
  • Roy P, Bishop DH, LeBlois H, Erasmus BJ. Long-lasting protection of sheep against bluetongue challenge after vaccination with virus-like particles: evidence for homologous and partial heterologous protection. Vaccine12(9), 805–811 (1994).
  • Estes MK, Mason BB, Crawford S, Cohen J. Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Res.12(4), 1875–1887 (1984).
  • Crawford SE, Labbe M, Cohen J, Burroughs MH, Zhou YJ, Estes MK. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol.68(9), 5945–5952 (1994).
  • Ready KF, Sabara M. In vitro assembly of bovine rotavirus nucleocapsid protein. Virology157(1), 189–198 (1987).
  • Agnello D, Herve CA, Lavaux A et al. Intrarectal immunization with rotavirus 2/6 virus-like particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice. J. Virol.80(8), 3823–3832 (2006).
  • O’Neal CM, Crawford SE, Estes MK, Conner ME. Rotavirus virus-like particles administered mucosally induce protective immunity. J. Virol.71, 8707–8717 (1997).
  • Parez N, Fourgeux C, Mohamed A et al. Rectal immunization with rotavirus virus-like particles induces systemic and mucosal humoral immune responses and protects mice against rotavirus infection. J. Virol.80(4), 1752–1761 (2006).
  • Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, Conner ME, Estes MK. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine21(25–26), 3885–3900 (2003).
  • Ciarlet M, Crawford SE, Barone C et al. Subunit rotavirus vaccine administered parenterally to rabbits induces active protective immunity. J. Virol.72, 9233–9246 (1998).
  • Choi AH, McNeal MM, Flint JA et al. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine20, 1733–1740 (2002).
  • VanCott JL, Prada AE, McNeal MM et al. Mice develop effective but delayed protective immune responses when immunized as neonates either intranasally with nonliving VP6/LT(R192G) or orally with live rhesus rotavirus vaccine candidates. J. Virol.80(10), 4949–4961 (2006).
  • Baumert TF, Vergalla J, Satoi J et al. Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology117(6), 1397–1407 (1999).
  • Elmowalid GA, Qiao M, Jeong SH et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc. Natl Acad. Sci. USA104(20), 8427–8432 (2007).
  • Lechmann M, Murata K, Satoi J, Vergalla J, Baumert TF, Liang TJ. Hepatitis C virus-like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology34(2), 417–423 (2001).
  • Campbell S, Rein A. In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J. Virol.73, 2270–2279 (1999).
  • Campbell S, Vogt VM. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol.69, 6487–6497 (1995).
  • Wagner R, Deml L, Schirmbeck R, Niedrig M, Reimann J, Wolf H. Construction, expression and immunogenicity of chimeric HIV-1 virus-like particles. Virology220, 128–140 (1996).
  • Hammonds J, Chen X, Fouts T, Devico A, Montefiori D, Spearman P. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J. Virol.79(23), 14804–14814 (2005).
  • Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L. HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. Vaccine29(31), 4913–4922 (2011).
  • Visciano ML, Diomede L, Tagliamonte M et al. Generation of HIV-1 virus-like particles expressing different HIV-1 glycoproteins. Vaccine29(31), 4903–4912 (2011).
  • Luo L, Li Y, Cannon PM, Kim S, Kang CY. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Proc. Natl Acad. Sci. USA89(21), 10527–10531 (1992).
  • Kim M, Qiao Z, Yu J, Montefiori D, Reinherz EL. Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. Vaccine25(27), 5102–5114 (2007).
  • Haffar OK, Smithgall MD, Moran PA, Travis BM, Zarling JM, Hu SL. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like Gag–Env particles. Virology183, 487–495 (1991).
  • Rovinski B, Haynes JR, Cao SX et al. Expression and characterization of genetically engineered human immunodeficiency virus-like particles containing modified envelope glycoproteins: implications for development of a cross-protective AIDS vaccine. J. Virol.66, 4003–4012 (1992).
  • Deml L, Schirmbeck R, Reimann J, Wolf H, Wagner R. Recombinant human immunodeficiency Pr55gag virus-like particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies. Virology235, 26–39 (1997).
  • Montefiori DC, Safrit JT, Lydy SL et al. Induction of neutralizing antibodies and gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in rhesus macaques. J. Virol.75, 5879–5890 (2001).
  • Vassilieva EV, Wang BZ, Vzorov AN et al. Enhanced mucosal immune responses to HIV virus-like particles containing a membrane-anchored adjuvant. MBio2(1), (2011).
  • Jain S, Patrick AJ, Rosenthal KL. Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine28(43), 7070–7080 (2010).
  • McBurney SP, Ross TM. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine27(32), 4337–4349 (2009).
  • McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology358(2), 334–346 (2007).
  • Quan FS, Sailaja G, Skountzou I et al. Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine25(19), 3841–3850 (2007).
  • Walker LM, Phogat SK, Chan-Hui PY et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science326(5950), 285–289 (2009).
  • Scheid JF, Mouquet H, Feldhahn N et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature458(7238), 636–640 (2009).
  • Tagliamonte M, Visciano ML, Tornesello ML, De SA, Buonaguro FM, Buonaguro L. Constitutive expression of HIV-VLPs in stably transfected insect cell line for efficient delivery system. Vaccine28(39), 6417–6424 (2010).
  • Choi AH, McNeal MM, Basu M et al. Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. Vaccine20, 3310–3321 (2002).
  • Crevar CJ, Ross TM. Elicitation of protective immune responses using a bivalent H5N1 VLP vaccine. Virol. J.5, 131 (2008).
  • Kang SM, Yoo DG, Lipatov AS et al. Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One4(3), e4667 (2009).
  • Quan FS, Vunnava A, Compans RW, Kang SM. Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PLoS One5(2), e9161 (2010).
  • Rovinski B, Rodrigues L, Cao SX et al. Induction of HIV type 1 neutralizing and env-CD4 blocking antibodies by immunization with genetically engineered HIV type 1-like particles containing unprocessed gp160 glycoproteins. AIDS Res. Hum. Retroviruses11, 1187–1195 (1995).
  • Liu WJ, Liu XS, Zhao KN, Leggatt GR, Frazer IH. Papillomavirus virus-like particles for the delivery of multiple cytotoxic T cell epitopes. Virology273(2), 374–382 (2000).
  • Zamora E, Handisurya A, Shafti-Keramat S et al. Papillomavirus-like particles are an effective platform for amyloid-β immunization in rabbits and transgenic mice. J. Immunol.177(4), 2662–2670 (2006).
  • Vietheer PT, Boo I, Drummer HE, Netter HJ. Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies. Antivir. Ther.12(4), 477–487 (2007).
  • Sadeyen JR, Tourne S, Shkreli M, Sizaret PY, Coursaget P. Insertion of a foreign sequence on capsid surface loops of human papillomavirus type 16 virus-like particles reduces their capacity to induce neutralizing antibodies and delineates a conformational neutralizing epitope. Virology309(1), 32–40 (2003).
  • Paz De la Rosa G, Monroy-Garcia A, Mora-Garcia ML et al. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol. J.6, 2 (2009).
  • Oh YK, Sohn T, Park JS et al. Enhanced mucosal and systemic immunogenicity of human papillomavirus-like particles encapsidating interleukin-2 gene adjuvant. Virology328(2), 266–273 (2004).
  • Krammer F, Schinko T, Messner P, Palmberger D, Ferko B, Grabherr R. Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J. Virol. Methods167(1), 17–22 (2010).
  • Inoue T, Kawano MA, Takahashi RU et al. Engineering of SV40-based nano-capsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. J. Biotechnol.134(1–2), 181–192 (2008).
  • Takahashi RU, Kanesashi SN, Inoue T et al. Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J. Biotechnol.135(4), 385–392 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.