394
Views
32
CrossRef citations to date
0
Altmetric
Review

Chlamydia vaccines: recent developments and the role of adjuvants in future formulations

, &
Pages 1585-1596 | Published online: 09 Jan 2014

References

  • Stephens RS, Tam MR, Kuo C-C, Nowinski RC. Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J. Immunol.128, 1083–1089 (1982).
  • Stephens RS, Wagar EA, Schoolnik GK. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J. Exp. Med.167, 817–831 (1988).
  • Bandea CI, Kubotaa K, Brown TM et al. Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein (omp1). Sex. Transm. Infect.77, 419–422 (2001).
  • Bush RM, Everett KD. Molecular evolution of Chlamydiaceae. Int. J. Syst. Evol. Microbiol.51, 203–220 (2001).
  • Schachter J, Stephens RS, Timms P et al. Radical changes to chlamydial taxonomy are not necessary just yet. Int. J. Syst. Evol. Microbiol.51, 251–253 (2001).
  • Schachter J. Infection and disease epidemiology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. Stephens RS (Ed.). ASM, Washington, DC, USA 139–169 (1999).
  • WHO. Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. WHO, Geneva, Switzerland (2001).
  • CDC. Sexually transmitted diseases, treatment guidelines, 2010. MMWR Recomm. Rep.59(RR-12), 1–110 (2010).
  • Mahdi OS, Byrne GI, Kalayoglu M. Emerging strategies in the diagnosis, prevention and treatment of chlamydial infections. Expert Opin. Ther. Patents11, 1253–1265 (2001).
  • Schachter J. NAATs to diagnose Chlamydia trachomatis genital infection: a promise still unfulfilled. Expert Rev. Mol. Diagn.1(2), 137–144 (2001).
  • Thein J, Zhao P, Liu H et al. Does clinical diagnosis indicate chlamydial infection in areas with a low prevalence of trachoma? Ophthalmic Epidemiol.9, 263–269 (2002).
  • Johnson RE, Newhall WJ, Papp JR et al. Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections – 2002. MMWR Recomm. Rep.51, 1–40 (2002).
  • Rees E. Treatment of pelvic inflammatory disease. Am. J. Obstet. Gynecol.138, 1042–1047 (1980).
  • Westrom L, Joesoef R, Reynolds G et al. Pelvic inflammatory inflammatory disease and infertility: a cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopy results. Sex. Transm. Dis.19, 185–192 (1992).
  • Paavonen J, Wolner-Hanssen P. Chlamydia trachomatis: a major threat to reproduction. J. Hum. Reprod.4, 111–124 (1989).
  • Stamm WE, Guinan ME, Johnson C et al. Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis. N. Engl. J. Med.310, 545–549 (1984).
  • Schachter J, Osoba AO. Lymphogranuloma venereum. Br. Med. Bull.39, 151–154 (1983).
  • Mabey D, Peeling RW. Lymphogranuloma venereum. Sex. Transm. Infect.78, 90–92 (2002).
  • Nieuwenhuis RF, Ossewaarde JM, Gotz HM et al. Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar L2 proctitis in The Netherlands among men who have sex with men. Clin. Infect. Dis.39, 996–1003 (2004).
  • CDC. Sexually transmitted disease surveillance, 2000. US Department of Health and Human Services, CDC, Atlanta, GA, USA (2001).
  • Ward H, Ronn M. Contribution of sexually transmitted infections to the sexual transmission of HIV. Curr. Opin. HIV AIDS5, 305–310 (2010).
  • Wilkinson D, Rutherford G. Population-based interventions for reducing sexually transmitted infections, including HIV infection. Cochrane Databse Syst. Rev. (2), CD001220 (2001).
  • Kilmarx PH, Mock PA, Levine WC. Effect of Chlamydia trachomatis coinfection on HIV shedding in genital tract secretion. Sex. Transm. Dis.28, 347–348 (2001).
  • Mcclelland RS, Wang CC, Mandaliya K et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS15, 105–110 (2001).
  • Simonetti A, Melo J, de Souza P et al. Immunological’s host profile for HPV and Chlamydia trachomatis, a cervical cancer cofactor. Microbes Infect.11, 435–442 (2009).
  • Kumar S, Hammerschlag M. Acute respiratory infection due to Chlamydia pneumoniae: current status of diagnostic methods. Clin. Infect. Dis.44, 568–576 (2007).
  • Kuo CC, Jackson LA, Campbell LA, Grayston JT. Chlamydia pneumoniae (TWAR). Clin. Microbiol. Rev.8, 451–461 (1995).
  • Gaillat J. Clinical manifestations of Chlamydia pneumoniae infections. Revue de Med. Interne.17, 987–999 (1996).
  • Everett KD. Chlamydia and Chlamydiales: more than meets the eye. Vet. Microbiol.75, 109–126 (2000).
  • Saikku P, Wang SP, Kleemola M et al. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J. Infect. Dis.151, 832–839 (1985).
  • Rodolaki A, Salinas J, Papp J. Recent advances on ovine chlamydial abortion. Vet. Res.29, 275–288 (1998).
  • Nietfeld J. Chlamydial infections in small ruminants. Vet. Clin. North Am. Food Anim. Pract.17, 301–314 (2001).
  • West S. Global elimination of blinding trachoma by 2020: where are we? Ophthalmic Epidemiol.16, 205 (2009).
  • Brunham R, Rekart M. The arrested immunity hypothesis and the epidemiology of Chlamydia control. Sex. Transm. Dis.35, 53–54 (2008).
  • Bragina EY, Gomberg MA, Dmitriev GA. Electron microscopic evidence of persistent chlamydial infection following treatment. J. Eur. Acad. Dermatol. Venereol.15, 405–409 (2001).
  • Byrne GI. Chlamydial treatment failures: a persistent problem? J. Eur. Acad. Dermatol. Venereol15, 381 (2001).
  • Dreses-Werringloer U, Padubrin I, Jurgens-Saathoff B, Hudson AP, Zeidler H, Kohler L. Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro. Antimicrob. Agents Chemother.44, 3288–3297 (2000).
  • Miyashita N, Fukano H, Hara H, Yoshida K, Niki Y, Matsushima T. Recurrent pneumonia due to persistent Chlamydia pneumoniae infection. Intern. Med.41, 30–33 (2002).
  • Rees E, Tait IA, Hobson D, Karayiannis P, Lee N. Persistence of chlamydial infection after treatment for neonatal conjunctivitis. Arch. Dis. Child.56, 193–198 (1981).
  • Babalola OE, Bage SD. The persistence of chlamydial inclusions in clinically quiescent trachoma. West Afr. J. Med.11, 55–61 (1992).
  • Thejls H, Gnarpe J, Lundkvist O, Heimer G, Larsson G, Victor A. Diagnosis and prevalence of persistent Chlamydia infection in infertile women: tissue culture, direct antigen detection, and serology. Fertil. Steril.55, 304–310 (1991).
  • Dean D, Suchland RJ, Stamm WE. Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J. Infect. Dis.182, 909–916 (2000).
  • Smith A, Munoz B, Hsieh YH, Bobo L, Mkocha H, West S. OmpA genotypic evidence for persistent ocular Chlamydia trachomatis infection in Tanzania village women. Ophthalmic Epidemiol.8, 127–135 (2001).
  • Holm SO, Jha HC, Bhatta RC et al. Comparison of two azithromycin distribution strategies for controlling trachoma in Nepal. Bull. World Health Organ.79, 194–200 (2001).
  • Diamant J, Benis R, Schachter J et al. Pooling of Chlamydia laboratory tests to determine the prevalence of ocular Chlamydia trachomatis infection. Ophthalmic Epidemiol.8, 109–117 (2001).
  • Bain DL, Lietman T, Rasmussen S et al. Chlamydial genovar distribution after community wide antibiotic treatment. J. Infect. Dis.184, 1581–1588 (2001).
  • Dawson CR, Schachter J. Should trachoma be treated with antibiotics? Lancet359, 184–185 (2002).
  • Cohen CR, Brunham RC. Pathogenesis of Chlamydia induced pelvic inflammatory disease. Sex. Transm. Infect.75, 21–24 (1999).
  • Ssemanda E, Munoz B, Harding-Esch E et al. Mass treatment with azithromycin for trachoma control: participation clusters in households. PLoS Negl. Trop. Dis.4(2), e838 (2010).
  • de la Maza MA, de la Maza LM. A new computer model for estimating the impact of vaccination protocols and its application to the study of Chlamydia trachomatis genital infections. Vaccine13, 119–127 (1995).
  • Schachter J. Overview of Chlamydia trachomatis infection and the requirements for a vaccine. Rev. Infect. Dis.7, 713–716 (1985).
  • Schachter J, Dawson CR. The epidemiology of trachoma predicts more blindness in the future. Sex. Transm. Dis. Suppl.69, 55–62 (1990).
  • Brunham R, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol.5, 149–161 (2005).
  • Rockey D, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev. Vaccines8(10), 1365–1377 (2008).
  • Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet. J.171, 263–275 (2006).
  • Chalmers WS, Simpson J, Lee SJ, Baxendale W. Use of a live chlamydial vaccine to prevent ovine enzootic abortion. Vet. Rec.141, 63–67 (1997).
  • Grayston JT, Woolridge RL, Wang S et al. Field studies of protection from infection by experimental trachoma virus vaccine in preschool-aged children on Taiwan. Proc. Soc. Exp. Biol. Med.112, 589–595 (1963).
  • Woolridge RL, Grayston JT, Chang IH, Yang CY, Cheng KH. Long-term follow-up of the initial (1959–1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol.63, 1650–1655 (1967).
  • Wang SP, Grayston JT, Alexander ER. Trachoma vaccine studies in monkeys. Am. J. Ophthalmol.63, 1615–1620 (1967).
  • Clements C, Dhir S, Grayston J, Wang S. Long term follow-up study of a trachoma vaccine trial in villages of Northern India. Am. J. Ophthalmol.87, 350–353 (1979).
  • Grayston JT, Wang SP, Yang YF, Woolridge RL. The effect of trachoma virus vaccine on the course of experimental trachoma infection in blind human volunteers. J. Exp. Med.115, 1009–1022 (1962).
  • Bietti G, Guerra P, Vozza R et al. Results of large-scale vaccination against trachoma in East Africa (Ethiopia) 1960–1965. Am. J. Ophthalmol.61, 1010–1029 (1966).
  • Sowa S, Sowa J, Collier L, Blyth W. Trachoma vaccine field trials in The Gambia. J. Hyg. (Lond.)67, 699–717 (1969).
  • Cochrane M, Armitage C, O’Meara C, Beagley K. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol.5(12), 1833–1856 (2010).
  • de la Maza LM, Peterson EM. Vaccines for Chlamydia trachomatis infections. Curr. Opin. Investig. Drugs3, 980–986 (2002).
  • Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol.1, 116–130 (2008).
  • Hafner L, McNeilly C. Vaccines for Chlamydia infections of the female genital tract. Future Microbiol.3(1), 67–77 (2008).
  • Igietseme JU, He Q, Eko FO et al. Development of vaccines to prevent chlamydial STDs. Mucosal Immunol.Update13, 12–17 (2005).
  • Stephens RS. Chlamydial Genomics and Vaccine Antigen Discovery. J. Infect. Dis.181, S521–S523 (2000).
  • Stephens RS, Lammel CJ. Chlamydia outer membrane protein discovery using genomics. Curr. Opin. Microbiol.4, 16–20 (2001).
  • Kawa DE, Stephens RS. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity. J. Immunol.168, 5184–5191 (2002).
  • Murdin AD, Dunn P, Sodoyer R et al. Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis.181, S544–S551 (2000).
  • Donati M, Sambri V, Comanducci M et al. DNA immunzation with pgp3 gene of Chlamydia trachomatis inhibits the spread of chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine21, 1089–1093 (2003).
  • Sharma J, Bosnic AM, Piper JM, Zhong G. Human antibody responses to a Chlamydia-secreted protease factor. Infect. Immun.72, 7164–7171 (2004).
  • Belland RJ, Scidmore MA, Crane DD et al.Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. PNAS98, 13984–13989 (2001).
  • Slepenkin A, de la Maza LM, Peterson EM. Interaction between components of the Type III secretion system of Chlamydiaceae. J. Bacteriol.187, 473–479 (2005).
  • Meoni E, Faenzi E, Frigimelica E et al. CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans. Infect. Immun.77, 4168–4176 (2009).
  • Follmann F, Olsen A, Jensen K et al. Antigenic profiling of a Chlamydia trachomatis gene-expression library. J. Infect. Dis.197(6), 897–905 (2008).
  • Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infect. Immun.70, 2741–2751 (2002).
  • Loomis PW, Starnbach MN. T cell responses to Chlamydia trachomatis. Curr. Opin. Microbiol.5, 87–91 (2002).
  • Igietseme JU, Black CM, Caldwell HD. Chlamydia vaccine: strategies and status. BioDrugs16, 19–35 (2002).
  • Igietseme JU, Eko FO, He Q et al. Delivery of Chlamydia vaccines. Expert Opin. Drug Deliv.2, 549–562 (2005).
  • Rank RG. Models of immunity. In: Chlamydia: Intracellular Biology, Pathogenesis and Immunity. Stephens RS (Ed.), ASM Press, Washington, DC, USA 239–295 (1999).
  • Champion C, Kickhoefer V, Liu G et al. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS ONE4, e5409 (2009).
  • Childs T, Webley W. In vitro assessment of chlamydial antigen display, delivery and processing by halobacterial gas vesicles. Presented at: 2011 ASM General Meeting, New Orleans, LA, USA, Session 197; Abstract 2215 (2011).
  • Stuart E, Morshed F, Sremac M, DasSarma S. Antigen presentation using novel particulate organelles from halophilic archaea. J. Biotechnol.88, 119–128 (2001).
  • Igietseme JU, Eko FO, Black CM. Contemporary approaches to designing and evaluating vaccines against Chlamydia. Expert Rev. Vaccines2(1), 129–146 (2003).
  • Pal S, Davis HL, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal challenge. Infect. Immun.70, 4812–4817 (2002).
  • Pal S, Luke CJ, Barbour AG, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis major outer membrane protein, using the outer surface protein A of Borrelia burgdorferi as an adjuvant, can induce protection against a chlamydial genital challenge. Vaccine21, 1455–1465 (2003).
  • Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat. Biotechnol.17, 1075–1081 (1999).
  • Schijns VEJC. Antigen delivery systems and immunostimulation. Vet. Immunol. Immunopathol.87, 195–198 (2002).
  • Raychaudhuri S, Rock KL. Fully mobilizing host defense: building better vacines. Nat. Biotechnol.16, 1025–1031 (1998).
  • Green BA, Baker SM. Recent advances and novel strategies in vaccine development. Curr. Opin. Microbiol.5, 483–488 (2002).
  • Fletcher MA. Vaccine candidate in STD. Int. J. STD AIDS12, 419–422 (2001).
  • Igietseme JU, Eko FO, He Q, Bandea C, Black C. Developing effective delivery systems for Chlamydia vaccines. Curr. Opin. Mol. Therapeutics6, 182–194 (2004).
  • Glenn G. The ‘perfect’ adjuvant, a stronger voice. Expert Rev. Vaccines10(4), 399–400 (2011).
  • Schijns VEJC, Lavelle E. Trends in vaccine adjuvants. Expert Rev. Vaccines10(4), 539–550 (2011).
  • O’Hagan D, Rappuoli R, De Gregorio E, Tsai T, Del Giudice G. MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev. Vaccines10(4), 447–462 (2011).
  • Raghunandan R. Virus-like particles: innate immune stimulators. Expert Rev. Vaccines10(4), 409–411 (2011).
  • Moser C, Amacker M, Zurbriggen R. Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev. Vaccines10(4), 437–466 (2011).
  • Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6, 723–739 (2007).
  • Garcon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines10(4), 471–486 (2011).
  • Tomai M, Vasilakos J. TLR-7 and TLR-8 agonists as vaccine adjuvants. Expert Rev. Vaccines10(4), 405–407 (2011).
  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines10(4), 499–511 (2011).
  • Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science283, 1335–1339 (1999).
  • Segal B, Chang J, Shevach E. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. J. Immunol.164(11), 5683–5688 (2000).
  • Petrovsy N, Cooper P. Carbohydrate-based immune adjuvants. Expert Rev. Vaccines10(4), 523–537 (2011).
  • Wu H-Y, Russell MW. Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. Immunol. Res.16, 187–201 (1997).
  • Kelly KA, Rank RG. Identification of homing receptors that mediate the recruitment of CD4 T cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect. Immun.65, 5198–5208 (1997).
  • Staats HF, Montgomery SP, Palker TJ. Intranasal immunization is superior to vaginal, gastric, or rectal immunization for induction of systemic and mucosal anti-HIV antibody responses. AIDS Res. Hum. Retroviruses13, 945–952 (1997).
  • Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune respose against a genital challenge. Infect. Immun.69, 6240–6247 (2001).
  • He Q, Martinez-Sobrido L, Eko FO et al. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology122, 28–37 (2007).
  • Li W, Murthy A, Guentzel M et al. Antigen-specific CD4+ T cells produce sufficient IFN-γ to mediate robust protective immunity against genital Chlamydia muridarum infection J. Immunol.180, 3375–3382 (2008).
  • Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun.65, 3361–3369 (1997).
  • Stephens R. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol.11, 44–51 (2003).
  • Gondek D, Roan N, Starnbach M. T cell responses in the absence of IFN-γ exacerbate uterine infection with Chlamydia trachomatis. J. Immunol.183, 1313–1319 (2009).
  • Matsuzaki G, Umemura M. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol. Immunol.51, 1139–1147 (2007).
  • Ley K, Smith E, MA S. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol. Res.34, 229–242 (2006).
  • Byrne G. Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity. J. Infect. Dis.201, S126–S133 (2010).
  • Bachmaier K, Penninger J. Chlamydia and antigenic mimicry. Curr. Top. Microbiol. Immunol.296, 153–163 (2005).
  • Swanborg R, Boros D, Whittum-Hudson J, Hudson A. Molecular mimicry and horror autotoxicus: do chlamydial infections elicit autoimmunity? Expert Rev. Mol. Med.8(29), 1–23 (2006).
  • Cragnolini J, García-Medel N, de Castro J. Endogenous processing and presentation of T-cell epitopes from Chlamydia trachomatis with relevance in HLA-B27-associated reactive arthritis. Mol. Cell Proteomics8, 1850–1859 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.