504
Views
52
CrossRef citations to date
0
Altmetric
Review

Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications

, , , &
Pages 97-116 | Published online: 09 Jan 2014

References

  • Winkelstein W Jr. Not just a country doctor: Edward Jenner, scientist. Epidemiol. Rev.14, 1–15 (1992).
  • Willis NJ. Edward Jenner and the eradication of smallpox. Scott. Med. J.42(4), 118–121 (1997).
  • Jalava K, Hensel A, Szostak M, Resch S, Lubitz W. Bacterial ghosts as vaccine candidates for veterinary applications. J. Cont. Rel.85(1–3), 17–25 (2002).
  • Kaminski RW, Oaks EV. Inactivated and subunit vaccines to prevent shigellosis. Expert Rev. Vaccines8(12), 1693–1704 (2009).
  • Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine28(Suppl. 3), C25–C36 (2010).
  • Patel JR, Heldens JG. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine27(12), 1797–1810 (2009).
  • Silva AJ, Eko FO, Benitez JA. Exploiting cholera vaccines as a versatile antigen delivery platform. Biotechnol. Lett.30(4), 571–579 (2008).
  • Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine25(14), 2545–2566 (2007).
  • Zepp F. Principles of vaccine design-lessons from nature. Vaccine28(Suppl. 3), C14–C24 (2010).
  • Ito Y. A tumor-producing factor extracted by phenol from papillomatous tissue (Shope) of cottontail rabbits. Virology12, 596–601 (1960).
  • Liu MA, Wahren B, Karlsson Hedestam GB. DNA vaccines: recent developments and future possibilities. Hum. Gene Ther.17(11), 1051–1061 (2006).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1), 1465–1468 (1990).
  • Dhama K, Mahendran M, Gupta PK, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Vet. Res. Commun.32(5), 341–356 (2008).
  • Babiuk S, Tsang C, van Drunen Littel-van den Hurk S, Babiuk LA, Griebel PJ. A single HBsAg DNA vaccination in combination with electroporation elicits long-term antibody responses in sheep. Bioelectrochemistry70(2), 269–274 (2007).
  • Oshop GL, Elankumaran S, Heckert RA. DNA vaccination in the avian. Vet. Immunol. Immunopathol.89(1–2), 1–12 (2002).
  • Dunham SP. The application of nucleic acid vaccines in veterinary medicine. Res. Vet. Sci.73(1), 9–16 (2002).
  • Wiendl H, Hohlfeld R, Kieseier BC. Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol.26(7), 373–380 (2005).
  • Nagaraju K. Immunological capabilities of skeletal muscle cells. Acta Physiol. Scand.171(3), 215–223 (2001).
  • Paukner S, Kudela P, Kohl G, Schlapp T, Friedrichs S, Lubitz W. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther.11(2), 215–223 (2005).
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*. Ann. Rev. Immunol.18, 927–974 (2000).
  • Henriksen -Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Exp. Opin. Drug Deliv.8(4), 505–519 (2011).
  • Arias JL, Clares B, Morales ME, Gallardo V, Ruiz MA. Lipid-based drug delivery systems for cancer treatment. Curr. Drug Targets12(8), 1151–1165 (2011).
  • Poirier VJ, Thamm DH, Kurzman ID et al. Liposome-encapsulated doxorubicin (Doxil) and doxorubicin in the treatment of vaccine-associated sarcoma in cats. J. Vet. Intern. Med.16(6), 726–731 (2002).
  • Marr AK, Kurzman ID, Vail DM. Preclinical evaluation of a liposome-encapsulated formulation of cisplatin in clinically normal dogs. Am. J. Vet. Res.65(11), 1474–1478 (2004).
  • U’Ren LW, Biller BJ, Elmslie RE, Thamm DH, Dow SW. Evaluation of a novel tumor vaccine in dogs with hemangiosarcoma. J. Vet. Intern. Med.21(1), 113–120 (2007).
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Cont. Rel.76(1–2), 59–71 (2001).
  • Zaks K, Jordan M, Guth A et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol.176(12), 7335–7345 (2006).
  • Tanaka T, Legat A, Adam E et al. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur. J. Immunol.38(5), 1351–1357 (2008).
  • Didierlaurent AM, Morel S, Lockman L et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol.183(10), 6186–6197 (2009).
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol.10(11), 787–796 (2010).
  • Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S et al. Combination adjuvants: the next generation of adjuvants? Expert Rev. Vaccines10(1), 95–107 (2011).
  • Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol.73, 329–368 (1999).
  • Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol.4(4), 249–258 (2004).
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Ann. Rev. Immunol.20, 709–760 (2002).
  • US FDA. Guidance for Industry: Guidance for Human Somatic Cell Therapy and Gene Therapy. US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville, MD, USA (1998).
  • EMEA. Overview of Comments Received on Guideline on the Non-clinical Studies Required Prior to Clinical Use of Gene Therapy Medicinal Products. EMEA/CHMP/GTWP/65260/2008. European Medicines Agency, London, UK (2008).
  • EMEA. Guideline on the Non-clinical Studies Required Prior to Clinical Use of Gene Therapy Medicinal Products. EMEA/CHMP/GTWP/125459/2006. European Medicines Agency, London, UK (2008).
  • EMEA. Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer. CPMP/BWP/3088/99. European Medicines Agency, London, UK (2001).
  • Calarota SA, Weiner DB. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol. Rev.199, 84–99 (2004).
  • Scheerlinck JY. Genetic adjuvants for DNA vaccines. Vaccine19(17–19), 2647–2656 (2001).
  • Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ.64(1), 13–22 (2005).
  • Davidson AH, Traub-Dargatz JL, Rodeheaver RM et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc.226(2), 240–245 (2005).
  • Davis EG, Zhang Y, Tuttle J, Hankins K, Wilkerson M. Investigation of antigen specific lymphocyte responses in healthy horses vaccinated with an inactivated West Nile virus vaccine. Vet. Immunol. Immunopathol.126(3–4), 293–301 (2008).
  • Bergman PJ, Camps-Palau MA, McKnight JA et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the animal medical center. Vaccine24(21), 4582–4585 (2006).
  • Thacker EL, Holtkamp DJ, Khan AS, Brown PA, Draghia-Akli R. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection. J. Anim. Sci.84(3), 733–742 (2006).
  • Liu MA. Immunologic basis of vaccine vectors. Immunity33(4), 504–515 (2010).
  • Tabrizi CA, Walcher P, Mayr UB et al. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol.15(6), 530–537 (2004).
  • Lubitz W, Witte A, Eko FO et al. Extended recombinant bacterial ghost system. J. Biotechnol.73(2–3), 261–273 (1999).
  • Szostak MP, Hensel A, Eko FO et al. Bacterial ghosts: non-living candidate vaccines. J. Biotechnol.44(1–3), 161–170 (1996).
  • Szostak M, Lubitz W. Recombinant bacterial ghosts as multivaccine vehicles. In: Vaccines 91: Modern Approaches to New Vaccines Including Prevention of AIDS. Chanock R (Ed.). Cold Spring Harbor Laboratory Press, NY, USA 409–414 (1991).
  • Lubitz P, Mayr UB, Lubitz W. Applications of bacterial ghosts in biomedicine. Adv. Exp. Med. Biol.655, 159–170 (2009).
  • Mayr B, Koller VJ, Lubitz P, Lubitz W. Bacterial Ghosts as Vaccine and Drug Delivery Platforms. Sleator R, Hill C (Eds). Landes Bioscience, Austin, TX, USA (2008).
  • Witte A, Wanner G, Blasi U, Halfmann G, Szostak M, Lubitz W. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J. Bacteriol.172(7), 4109–4114 (1990).
  • Huter V, Szostak MP, Gampfer J et al. Bacterial ghosts as drug carrier and targeting vehicles. J. Cont. Rel.61(1–2), 51–63 (1999).
  • Paukner S, Kohl G, Jalava K, Lubitz W. Sealed bacterial ghosts – novel targeting vehicles for advanced drug delivery of water-soluble substances. J. Drug Target11(3), 151–161 (2003).
  • Witte A, Wanner G, Sulzner M, Lubitz W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol.157(4), 381–388 (1992).
  • Riedmann EM, Kyd JM, Cripps AW, Lubitz W. Bacterial ghosts as adjuvant particles. Expert Rev. Vaccines6(2), 241–253 (2007).
  • Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system: production and applications. Bioeng. Bugs1(5), 326–336 (2010).
  • Ebensen T, Paukner S, Link C et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol.172(11), 6858–6865 (2004).
  • Eko FO, Lubitz W, McMillan L et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine21(15), 1694–1703 (2003).
  • Eko FO, Mayr UB, Attridge SR, Lubitz W. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. J. Biotechnol.83(1–2), 115–123 (2000).
  • Eko FO, Schukovskaya T, Lotzmanova EY et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine21(25–26), 3663–3674 (2003).
  • Ekong EE, Okenu DN, Mania-Pramanik J et al. A Vibrio cholerae ghost-based subunit vaccine induces cross-protective chlamydial immunity that is enhanced by CTA2B, the nontoxic derivative of cholera toxin. FEMS Immunol. Med. Microbiol.55(2), 280–291 (2009).
  • Hensel A, Huter V, Katinger A et al. Intramuscular immunization with genetically inactivated (ghosts) Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine18(26), 2945–2955 (2000).
  • Huter V, Hensel A, Brand E, Lubitz W. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine. J. Biotechnol.83(1–2), 161–172 (2000).
  • Jechlinger W, Haller C, Resch S, Hofmann A, Szostak MP, Lubitz W. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine23(27), 3609–3617 (2005).
  • Katinger A, Lubitz W, Szostak MP et al. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. J. Biotechnol.73(2–3), 251–260 (1999).
  • Marchart J, Rehagen M, Dropmann G et al. Protective immunity against pasteurellosis in cattle, induced by Pasteurella haemolytica ghosts. Vaccine21(13–14), 1415–1422 (2003).
  • Mayr UB, Haller C, Haidinger W et al. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun.73(8), 4810–4817 (2005).
  • Walcher P, Cui X, Arrow JA et al. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine26(52), 6832–6838 (2008).
  • Eko FO, Hensel A, Bunka S, Lubitz W. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine12(14), 1330–1334 (1994).
  • Eko FO, Okenu DN, Singh UP, He Q, Black C, Igietseme JU. Evaluation of a broadly protective Chlamydia–cholera combination vaccine candidate. Vaccine29(21), 3802–3810 (2011).
  • Jechlinger W, Szostak MP, Witte A, Lubitz W. Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. FEMS Microbiol. Lett.173(2), 347–352 (1999).
  • Witte A, Blasi U, Halfmann G, Szostak M, Wanner G, Lubitz W. Phi X174 protein E-mediated lysis of Escherichia coli. Biochimie72(2–3), 191–200 (1990).
  • Witte A, Lubitz W. Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli.Eur. J. Biochem.180(2), 393–398 (1989).
  • Blasi U, Henrich B, Lubitz W. Lysis of Escherichia coli by cloned phi X174 gene E depends on its expression. J. Gen. Microbiol.131(5), 1107–1114 (1985).
  • Henrich B, Lubitz W, Plapp R. Lysis of Escherichia coli by induction of cloned phi X174 genes. Mol. Gen. Genet.185(3), 493–497 (1982).
  • Mayr UB, Walcher P, Azimpour C, Riedmann E, Haller C, Lubitz W. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev.57(9), 1381–1391 (2005).
  • Jalava K, Eko FO, Riedmann E, Lubitz W. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev. Vaccines2(1), 45–51 (2003).
  • Lubitz W, Pugsley AP. Changes in host cell phospholipid composition of øX174 gene E product. FEMS Microbiol. Lett.30(1–2), 171–175 (1985).
  • Witte A, Lubitz W, Bakker EP. Proton-motive-force-dependent step in the pathway to lysis of Escherichia coli induced by bacteriophage phi X174 gene E product. J. Bacteriol.169(4), 1750–1752 (1987).
  • Lubitz W, Halfmann G, Plapp R. Lysis of Escherichia coli after infection with phiX174 depends on the regulation of the cellular autolytic system. J. Gen. Microbiol.130(Pt 5), 1079–1087 (1984).
  • Schon P, Schrot G, Wanner G, Lubitz W, Witte A. Two-stage model for integration of the lysis protein E of phi X174 into the cell envelope of Escherichia coli. FEMS Microbiol. Rev.17(1–2), 207–212 (1995).
  • Witte A, Schrot G, Schon P, Lubitz W. Proline 21, a residue within the alpha-helical domain of phiX174 lysis protein E, is required for its function in Escherichia coli. Mol. Microbiol.26(2), 337–346 (1997).
  • Ronchel MC, Molina L, Witte A et al. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl. Environ. Microbiol.64(12), 4904–4911 (1998).
  • Kloos DU, Stratz M, Guttler A, Steffan RJ, Timmis KN. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J. Bacteriol.176(23), 7352–7361 (1994).
  • Jechlinger W, Szostak MP, Lubitz W. Cold-sensitive E-lysis systems. Gene218(1–2), 1–7 (1998).
  • Kwon SR, Nam YK, Kim SK, Kim KH. Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish Shellfish Immunol.20(4), 621–626 (2006).
  • Perrin P, Morgeaux S. Inactivation of DNA by β-propiolactone. Biologicals23(3), 207–211 (1995).
  • Haidinger W, Mayr UB, Szostak MP, Resch S, Lubitz W. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease. Appl. Environ. Microbiol.69(10), 6106–6113 (2003).
  • Langemann T. Process development for industrial scale bacterial ghost production. University of Vienna, Vienna, Austria (2011).
  • Ifere GO, He Q, Igietseme JU et al. Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J. Microbiol. Immunol. Infect.40(3), 188–200 (2007).
  • Macmillan L, Ifere GO, He Q et al. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol. Med. Microbiol.49(1), 46–55 (2007).
  • Ramey K, Eko FO, Thompson WE, Armah H, Igietseme JU, Stiles JK. Immunolocalization and challenge studies using a recombinant Vibrio cholerae ghost expressing Trypanosoma brucei Ca(2+) ATPase (TBCA2) antigen. Am. J. Trop. Med. Hyg.81(3), 407–415 (2009).
  • Hobom G, Arnold N, Ruppert A. OmpA fusion proteins for presentation of foreign antigens on the bacterial outer membrane. Dev. Biol. Stand.84, 255–262 (1995).
  • Jechlinger W, Haidinger W, Paukner S et al. Bacterial ghosts as carrier and targeting systems for antigen delivery. In: Vaccine Delivery Strategies. Dietrich G, Goebel W (Eds). Horizon Scientific Press, Wymondham, Norfolk, UK, 163–184 (2002).
  • Schulman H, Kennedy EP. Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. J. Bacteriol.137(1), 686–688 (1979).
  • Lubitz W. Bacterial ghosts as carrier and targeting systems. Exp. Opin. Biol. Ther.1(5), 765–771 (2001).
  • Riedmann EM, Kyd JM, Smith AM et al. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts – a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol. Med. Microbiol.37(2–3), 185–192 (2003).
  • Walcher P, Mayr UB, Azimpour-Tabrizi C et al. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors. Expert Rev. Vaccines3(6), 681–691 (2004).
  • Kuen B, Sleytr UB, Lubitz W. Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene145(1), 115–120 (1994).
  • Riedmann EM, Lubitz W, McGrath J, Kyd JM, Cripps AW. Effectiveness of engineering the nontypeable Haemophilus influenzae antigen Omp26 as an S-layer fusion in bacterial ghosts as a mucosal vaccine delivery. Hum. Vaccin.7(Suppl.), 99–107 (2011).
  • Cui X, Duckworth JA, Lubitz P et al. Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein. Vaccine28(26), 4268–4274 (2010).
  • Mayrhofer P, Tabrizi CA, Walcher P, Haidinger W, Jechlinger W, Lubitz W. Immobilization of plasmid DNA in bacterial ghosts. J. Control. Release102(3), 725–735 (2005).
  • Jechlinger W, Azimpour Tabrizi C, Lubitz W, Mayrhofer P. Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J. Mol. Microbiol. Biotechnol.8(4), 222–231 (2004).
  • Kudela P, Paukner S, Mayr UB et al. Effective gene transfer to melanoma cells using bacterial ghosts. Cancer Lett.262(1), 54–63 (2008).
  • Kudela P, Paukner S, Mayr UB et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J. Immunother.28(2), 136–143 (2005).
  • Chen ZY, He CY, Kay MA. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum. Gene Ther.16(1), 126–131 (2005).
  • Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J. Cont. Rel.94(1), 63–74 (2004).
  • Furst-Ladani S, Redl H, Haslberger A et al. Bacterial cell envelopes (ghosts) but not S-layers activate human endothelial cells (HUVECs) through sCD14 and LBP mechanism. Vaccine18(5–6), 440–448 (1999).
  • Kudela P, Koller VJ, Mayr UB, Nepp J, Lubitz W, Barisani-Asenbauer T. Bacterial ghosts as antigen and drug delivery system for ocular surface diseases: effective internalization of bacterial ghosts by human conjunctival epithelial cells. J. Biotechnol.153(3–4), 167–175 (2011).
  • Paukner S, Stiedl T, Kudela P, Bizik J, Al Laham F, Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Exp. Opin. Drug Deliv.3(1), 11–22 (2006).
  • Felnerova D, Kudela P, Bizik J et al. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit.10(10), BR362–BR370 (2004).
  • Hensel A, van Leengoed LA, Szostak M et al. Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model. J. Biotechnol.44(1–3), 171–181 (1996).
  • Guan L, Mu W, Champeimont J et al. Iron-regulated lysis of recombinant escherichia coli in host releases protective antigen and confers biological containment. Infect. Immun.79(7), 2608–2618 (2011).
  • Panthel K, Jechlinger W, Matis A et al. Generation of Helicobacter pylori ghosts by PhiX protein E-mediated inactivation and their evaluation as vaccine candidates. Infect. Immun.71(1), 109–116 (2003).
  • Eko FO, Ekong E, He Q, Black CM, Igietseme JU. Induction of immune memory by a multisubunit chlamydial vaccine. Vaccine29(7), 1472–1480 (2011).
  • Talebkhan Y, Bababeik M, Esmaeili M et al.Helicobacter pylori bacterial ghost containing recombinant Omp18 as a putative vaccine. J. Microbiol. Methods82(3), 334–337 (2010).
  • Eko FO, Talin BA, Lubitz W. Development of a Chlamydia trachomatis bacterial ghost vaccine to fight human blindness. Hum. Vaccin.4(3), 176–183 (2008).
  • Foxwell AR, Kyd JM, Cripps AW. Mucosal immunization against respiratory bacterial pathogens. Expert Rev. Vaccines2(4), 551–560 (2003).
  • Baqar S, Bourgeois AL, Schultheiss PJ et al. Safety and immunogenicity of a prototype oral whole-cell killed Campylobacter vaccine administered with a mucosal adjuvant in non-human primates. Vaccine13(1), 22–28 (1995).
  • Mader HJ, Szostak MP, Hensel A, Lubitz W, Haslberger AG. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine15(2), 195–202 (1997).
  • Mayr UB, Kudela P, Atrasheuskaya A, Bukin E, Ignatyev GM, Lubitz W. Rectal single dose immunization of mice with Escherichia coli O157:H7 bacterial ghosts induces efficient humoral and cellular immune responses and protects against the lethal heterologous challenge. Microb. Biotechnol. doi:10.1111/j.1751-7915.2011.00316.x (2011) (Epub ahead of print).
  • Marchart J, Dropmann G, Lechleitner S et al.Pasteurella multocida- and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine21(25–26), 3988–3997 (2003).
  • Gudding R, Lillehaug A, Evensen O. Recent developments in fish vaccinology. Vet. Immunol. Immunopathol.72(1–2), 203–212 (1999).
  • Plumb JA. Edwardsiella septicaemias In: Fish Diseases and Disorders. Volume 3: Viral Bacterial and Fungal Disorders. Woo PTK, Bruno DW (Eds). CAB International, Wallingford, UK 479–521 (1999).
  • Kwon SR, Nam YK, Kim SK, Kim DS, Kim KH. Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E.Aquaculture250(1–2), 16–21 (2005).
  • Hart S, Wrathmell AB, Harris JE, Grayson TH. Gut immunology in fish: a review. Develop. Comparat. Immunol.12(3), 453–480 (1988).
  • Kwon SR, Lee EH, Nam YK, Kim SK, Kim KH. Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture269(1–4), 84–88 (2007).
  • Quentel C, Vigneulle M. Antigen uptake and immune responses after oral vaccination. Dev. Biol. Stand.90, 69–78 (1997).
  • Kwon SR, Kang YJ, Lee DJ et al. Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and staphylococcal nuclease A gene. Mol. Biotechnol.42(2), 154–159 (2009).
  • Talwar GP, Vyas HK, Purswani S, Gupta JC. Gonadotropin-releasing hormone/human chorionic gonadotropin β based recombinant antibodies and vaccines. J. Rep. Immunol.83(1–2), 158–163 (2009).
  • Purswani S, Talwar GP. Development of a highly immunogenic recombinant candidate vaccine against human chorionic gonadotropin. Vaccine29(12), 2341–2348 (2011).
  • Lubitz W, Harkness RE, Ishiguro EE. Requirement for a functional host cell autolytic enzyme system for lysis of Escherichia coli by bacteriophage phi X174. J. Bacteriol.159(1), 385–387 (1984).
  • Wadle D, Henrich B, Plapp R. Effect of mutations in genes fadR, fabB, fadE and envC of Escherichia coli on the action of the lysis gene of bacteriophage PhiX174. Curr. Microbiol.14, 5 (1986).
  • Maratea D, Young K, Young R. Deletion and fusion analysis of the phage phi X174 lysis gene E. Gene40(1), 39–46 (1985).
  • Halfmann G. Einfluss zellulaerar mutationen auf die PhiX174 protein E-induzierte lyse von Escherichia coli. University of Munich, Munich, Germany (1989).
  • Witte A, Brand E, Mayrhofer P, Narendja F, Lubitz W. Mutations in cell division proteins FtsZ and FtsA inhibit phiX174 protein-E-mediated lysis of Escherichia coli. Arch. Microbiol.170(4), 259–268 (1998).
  • Witte A. Untersuchungen zur Wirkung von PhiX174 Protein E sowie davon abgeleiteter chimaerer Protein auf den Zellwandkomplex von Escherichia coli. University of Munich, Munich, Germany (1990).
  • Blasi U, Young R, Lubitz W. Evaluation of the interaction of phi X174 gene products E and K in E-mediated lysis of Escherichia coli. J. Virol.62(11), 4362–4364 (1988).
  • Zheng Y, Struck DK, Bernhardt TG, Young R. Genetic analysis of MraY inhibition by the phiX174 protein E. Genetics180(3), 1459–1466 (2008).
  • Abtin A, Kudela P, Mayr UB et al.Escherichia coli ghosts promote innate immune responses in human keratinocytes. Biochem. Biophys. Res. Commun.400(1), 78–82 (2010).
  • Eko FO, He Q, Brown T et al. A novel recombinant multisubunit vaccine against Chlamydia. J. Immunol.173(5), 3375–3382 (2004).
  • Wang X, Lu C. Mice orally vaccinated with Edwardsiella tarda ghosts are significantly protected against infection. Vaccine27(10), 1571–1578 (2009).
  • Chu W, Zhuang X, Lu C. Generation of Aeromonas hydrophila ghosts and their evaluation as oral vaccine candidates in Carassius auratus gibelio. Wei Sheng Wu Xue Bao48(2), 202–206 (2008).

Patent

  • Ma Y, Zhang YX, Zhao DL, Wang PB. ZL200410089496.0 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.