114
Views
32
CrossRef citations to date
0
Altmetric
Perspective

Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy?

, &
Pages 43-54 | Published online: 09 Jan 2014

References

  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol.12, 509–517 (2011).
  • Flinsenberg TW, Compeer EB, Boelens JJ, Boes M. Antigen cross-presentation: extending recent laboratory findings to therapeutic intervention. Clin. Exp. Immunol.165, 8–18 (2011).
  • Huang J, Honda W. CED: a conformational epitope database. BMC Immunol.7, 7 (2006).
  • Sette A, Peters B. Immune epitope mapping in the post-genomic era: lessons for vaccine development. Curr. Opin. Immunol.19, 106–110 (2007).
  • Ottenhoff TH, Doherty TM, van Dissel JT et al. First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum. Vaccin.6, 1007–1015 (2010).
  • Söllner J, Heinzel A, Summer G et al. Concept and application of a computational vaccinology workflow. Immunome Res.6(Suppl. 2), S7 (2010).
  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov.9, 325–338 (2010).
  • Cantor JR, Yoo TH, Dixit A, Iverson BL, Forsthuber TG, Georgiou G. Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc. Natl Acad. Sci. USA108, 1272–1277 (2011).
  • Star B, Nederbragt AJ, Jentoft S et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature477, 207–210 (2011).
  • Del Val M, Iborra S, Ramos M, Lázaro S. Generation of MHC class 1 ligands in the secretory and vesicular pathways. Cell Mol. Life Sci.68, 1543–1552 (2011).
  • Mester G, Hoffmann V, Stevanović S. Insights into MHC class 1 antigen processing gained from large-scale analysis of class 1 ligands. Cell Mol. Life Sci.68, 1521–1532 (2011).
  • Dragovic SM, Hill T, Christianson GJ et al. Proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with antigen processing control CD4+ Th cell responses by regulating indirect presentation of MHC class 2-restricted cytoplasmic antigens. J. Immunol.186(12), 6683–6692 (2011).
  • Sijts EJ, Kloetzel PM. The role of the proteasome in the generation of MHC class 1 ligands and immune responses. Cell Mol. Life Sci.68, 1491–1502 (2011).
  • Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M. Modeling the adaptive immune system: predictions and simulations. Bioinformatics23, 3265–3275 (2007).
  • Diez-Rivero CM, Lafuente EM, Reche PA. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome. BMC Bioinformatics11, 479 (2010).
  • Roder G, Geironson L, Darabi A et al. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class 1. Eur. J. Immunol.39, 2682–2694 (2009).
  • Roder G, Geironson L, Rasmussen M, Harndahl M, Buus S, Paulsson KM. Tapasin discriminates peptide-HLA-A*02:01 complexes formed with natural ligands. J. Biol. Chem. doi:10.1074/jbc.M111.230151 (2011) (Epub ahead of print).
  • van den Hoorn T, Paul P, Jongsma ML, Neefjes J. Routes to manipulate MHC class 2 antigen presentation. Curr. Opin. Immunol.23, 88–95 (2011).
  • Call MJ. Small molecule modulators of MHC class 2 antigen presentation: mechanistic insights and implications for therapeutic application. Mol. Immunol.48, 1735–1743 (2011).
  • Watts C. The endosome–lysosome pathway and information generation in the immune system. Biochim. Biophys. Acta doi:10.1016/j.bbapap.2011.07.006 (2011) (Epub ahead of print).
  • Landsverk OJ, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand. J. Immunol.70, 184–193 (2009).
  • Münz C. Enhancing immunity through autophagy. Ann. Rev. Immunol.27, 423–449 (2009).
  • Zavasnik-Bergant T, Turk B. Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biol. Chem.388, 1141–1149 (2007).
  • Conus S, Simon HU. Cathepsins and their involvement in immune responses. Swiss Med. Wkly140, w13042 (2010).
  • Jørgensen KW, Buus S, Nielsen M. Structural properties of MHC class 2 ligands, implications for the prediction of MHC class 2 epitopes. PLoS One5, e15877 (2010).
  • van Endert P. Post-proteasomal and proteasome-independent generation of MHC class 1 ligands. Cell Mol. Life Sci.68, 1553–1567 (2011).
  • Chemali M, Radtke K, Desjardins M, English L. Alternative pathways for MHC class 1 presentation: a new function for autophagy. Cell Mol. Life Sci.68, 1533–1541 (2011).
  • Larsen MV, Nielsen M, Weinzierl A, Lund O. TAP-independent MHC class 1 presentation. Curr. Immunol. Rev.2, 233–245 (2006).
  • Segura E, Villadangos JA. A modular and combinatorial view of the antigen cross-presentation pathway in dendritic cells. Traffic12(12), 1677–1685 (2011).
  • Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol.22, 109–117 (2010).
  • Burrows SR, Rossjohn J, McCluskey J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol.27, 11–16 (2006).
  • Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class 1 supertypes: a revised and updated classification. BMC Immunol.9, 1471–2172 (2008).
  • Lundegaard C, Lund O, Buus S, Nielsen M. Major histocompatibility complex class 1 binding predictions as a tool in epitope discovery. Immunology130, 309–318 (2010).
  • Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG. The IMGT/HLA database. Nucleic Acids Res.39, D1171–D1176 (2011).
  • Nielsen M, Lund O, Buus S, Lundegaard C. MHC class 2 epitope predictive algorithms. Immunology130, 319–328 (2010).
  • Bordner AJ. Towards universal structure-based prediction of class 2 MHC epitopes for diverse allotypes. PLoS One5, e14383 (2010).
  • Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res.39, D913–D919 (2011).
  • Sayers EW, Barrett T, Benson DA et al. Database resources of the national center for biotechnology information. Nucleic Acids Res.39, D38–D51 (2011).
  • Vita R, Zarebski L, Greenbaum JA et al. The immune epitope database 2.0. Nucleic Acids Res.38, D854–D862 (2010).
  • Scharnagl NC, Klade CS. Experimental discovery of T-cell epitopes: combining the best of classical and contemporary approaches. Exp. Review Vaccin.6(4), 605–615 (2007).
  • Li Pira G, Ivaldi F, Moretti P, Manca F. High throughput T epitope mapping and vaccine development. J. Biomed. Biotechnol.2010, 325720 (2010).
  • Hoppes R, Ekkebus R, Schumacher TN, Ovaa H. Technologies for MHC class 1 immunoproteomics. J. Proteom.73, 1945–1953 (2010).
  • Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity25, 533–543 (2006).
  • Riedl P, Wieland A, Lamberth K et al. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential. J. Immunol.183, 370–380 (2009).
  • Baumgartner CK, Malherbe LP. Antigen-driven T-cell repertoire selection during adaptive immune responses. Immunol. Cell Biol.89, 54–59 (2011).
  • Dominguez MR, Silveira EL, de Vasconcelos JR et al. Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. PLoS One6, e22011 (2011).
  • Im EJ, Hong JP, Roshorm Y et al. Protective efficacy of serially up-ranked subdominant CD8+ T cell epitopes against virus challenges. PLoS Pathog.7, e1002041 (2011).
  • Ruckwardt TJ, Luongo C, Malloy AM et al. Responses against a subdominant CD8+ T cell epitope protect against immunopathology caused by a dominant epitope. J. Immunol.185, 4673–4680 (2010).
  • Kiecker F, Streitz M, Ay B et al. Analysis of antigen-specific T-cell responses with synthetic peptides –what kind of peptide for which purpose? Hum. Immunol.65, 523–536 (2004).
  • Zandvliet ML, van Liempt E, Jedema I et al. Simultaneous isolation of CD8(+) and CD4(+) T cells specific for multiple viruses for broad antiviral immune reconstitution after allogeneic stem cell transplantation. J. Immunother.34, 307–319 (2011).
  • Casalegno-Garduño R, Schmitt A, Yao J et al. Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer. Immunol. Immunother.59, 195–202 (2010).
  • Leisner C, Loeth N, Lamberth K et al. One-pot, mix-and-read peptide–MHC tetramers. PLoS One3, e1678 (2008).
  • Burrows JM, Wynn KK, Tynan FE et al. The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV. Eur. J. Immunol.37, 946–953 (2007).
  • Schøller J, Singh M, Bergmeier L et al. A recombinant human HLA-class 1 antigen linked to dextran elicits innate and adaptive immune responses. J. Immunol. Methods360, 1–9 (2010).
  • Neudorfer J, Schmidt B, Huster KM et al. Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J. Immunol. Methods320, 119–131 (2007).
  • Harndahl M, Justesen S, Lamberth K, Røder G, Nielsen M, Buus S. Peptide binding to HLA class 1 molecules: homogenous, high-throughput screening, and affinity assays. J. Biomol. Screen14, 173–180 (2009).
  • Peters B, Bui HH, Frankild S et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol.2, e65 (2006).
  • Lundegaard C, Hoof I, Lund O, Nielsen M. State of the art and challenges in sequence based T-cell epitope prediction. Immunome. Res.6(Suppl. 2), S3 (2010).
  • Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class 2 peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol.4, e1000048 (2008).
  • Bordner AJ, Abagyan R. Ab initio prediction of peptide–MHC binding geometry for diverse class 1 MHC allotypes. Proteins63, 512–526 (2006).
  • Zhang H, Wang P, Papangelopoulos N et al. Limitations of Ab initio predictions of peptide binding to MHC class 2 molecules. PLoS One5, e9272 (2010).
  • Lundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J. Immunol. Methods374(1–2), 26–34 (2010).
  • Reche PA, Reinherz EL. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires. Methods Mol. Biol.409, 163–173 (2007).
  • Doytchinova IA, Guan P, Flower DR. Identifiying human MHC supertypes using bioinformatic methods. J. Immunol.172, 4314–4323 (2004).
  • Heckerman D, Kadie C, Listgarten J. Leveraging information across HLA alleles/supertypes improves epitope prediction. J. Comput. Biol.14, 736–746 (2007).
  • Hertz T, Yanover C. Identifying HLA supertypes by learning distance functions. Bioinformatics23, e148–e155 (2007).
  • Lamberth K, Røder G, Harndahl M et al. The peptide-binding specificity of HLA-A*3001 demonstrates membership of the HLA-A3 supertype. Immunogenetics60, 633–643 (2008).
  • Rapin N, Hoof I, Lund O, Nielsen M. MHC motif viewer. Immunogenetics60, 759–765 (2008).
  • Axelsson-Robertson R, Ahmed RK, Weichold FF et al. Human leukocyte antigens A*3001 and A*3002 show distinct peptide-binding patterns of the Mycobacterium tuberculosis protein TB10.4: consequences for immune recognition. Clin. Vaccin. Immunol.18, 125–134 (2011).
  • Zhang H, Lundegaard C, Nielsen M. Pan-specific MHC class 1 predictors: a benchmark of HLA class 1 pan-specific prediction methods. Bioinformatics25, 83–89 (2009).
  • Zhang L, Udaka K, Mamitsuka H, Zhu S. Toward more accurate pan-specific MHC–peptide binding prediction: a review of current methods and tools. Brief. Bioinform. doi:10.1093/bib/bbr060 (2011) (Epub ahead of print).
  • Hoof I, Peters B, Sidney J et al. NetMHCpan, a method for MHC class 1 binding prediction beyond humans. Immunogenetics61, 1–13 (2009).
  • Nielsen M, Lundegaard C, Blicher T et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One2, e796 (2007).
  • Hoof I, Pérez CL, Buggert M et al. Interdisciplinary analysis of HIV-specific CD8+ T cell responses against variant epitopes reveals restricted TCR promiscuity. J. Immunol.184(9), 5383–5391 (2010).
  • Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics doi:10.1007/s00251-011-0579-8 (2011) (Epub ahead of print).
  • Wu C, Zanker D, Valkenburg S et al. Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc. Natl Acad. Sci. USA doi:0.1073/pnas.1105624108 (2011) (Epub ahead of print).
  • Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class 1 MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics24, 1397–1398 (2008).
  • Erup Larsen M, Kloverpris H, Stryhn A et al. HLArestrictor – a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics63, 43–55 (2011).
  • Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class 1 pathway epitope predictions. Immunogenetics62, 357–368 (2010).
  • Diez-Rivero CM, Chenlo B, Zuluaga P, Reche PA. Quantitative modeling of peptide binding to TAP using support vector machine. Proteins78, 63–72 (2010).
  • Schmid BV, Kesmir C, de Boer RJ. The specificity and polymorphism of the MHC class 1 prevents the global adaptation of HIV-1 to the monomorphic proteasome and TAP. PLoS One3, e3525 (2008).
  • Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics57, 33–41 (2005).
  • Wang P, Sidney J, Kim Y et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform.11, 568 (2010).
  • Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S. NetMHCIIpan-2.0 – improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome. Res.6, 9 (2010).
  • Vollers SS, Stern LJ. Class 2 major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology123, 305–313 (2008).
  • James EA, LaFond R, Durinovic-Bello I, Kwok W. Visualizing antigen specific CD4+ T cells using MHC class 2 tetramers. J. Vis. Exp.6(25), pii: 1167 (2009).
  • Sylvester-Hvid C, Nielsen M, Lamberth K et al. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tis. Antigens63, 395–400 (2004).
  • Zhang GL, Ansari HR, Bradley P et al. Machine learning competition in immunology – prediction of HLA class 1 molecules. J. Immunol. Methods374(1–2), 1–4 (2011).
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol.152, 163–175 (1994).
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics50, 213–219 (1999).
  • Wang M, Lamberth K, Harndahl M et al. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine25, 2823–2831 (2007).
  • Wang M, Tang ST, Lund O, Dziegiel MH, Buus S, Claesson MH. High-affinity human leucocyte antigen class 1 binding variola-derived peptides induce CD4+ T cell responses more than 30 years post-vaccinia virus vaccination. Clin. Exp. Immunol.155, 441–446 (2009).
  • Moutaftsi M, Peters B, Pasquetto V et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to Vaccinia virus. Nat. Biotechnol.24, 817–819 (2006).
  • Vordermeier M, Whelan AO, Hewinson RG. Recognition of mycobacterial epitopes by T cells across mammalian species and use of a program that predicts human HLA-DR binding peptides to predict bovine epitopes. Infect. Immun.71, 1980–1987 (2003).
  • Pedersen LE, Harndahl M, Rasmussen M et al. Porcine major histocompatibility complex (MHC) class 1 molecules and analysis of their peptide-binding specificities. Immunogenetics63(12), 821–834 (2011).
  • Buggert, M, Norstrom M, Lundegaard C, Lund O, Nielsen M, Karlsson AC. Interdisciplinary evaluation of broadly-reactive HLA class II restricted epitopes eliciting hiv-specific CD4+T cell responses. AIDS Res. Hum. Retroviruses (2011) (In Press).
  • Perez CL, Larsen MV, Gustafsson R et al. Broadly immunogenic HLA class 1 supertype-restricted elite CTL epitopes recognized in a diverse population infected with different HIV-1 subtypes. J. Immunol.180, 5092–5100 (2008).
  • Gowthaman U, Agrewala JN. In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde? Expert Rev. Proteom.6(5), 527–537 (2009).
  • Colantonio AD, Bimber BN, Neidermyer WJ et al. KIR polymorphisms modulate peptide-dependent binding to an MHC class 1 ligand with a Bw6 motif. PLoS Pathog.7, e1001316 (2011).
  • Harndahl M, Rasmussen M, Roder G, Buus S. Real-time, high-throughput measurements of peptide–MHC-I dissociation using a scintillation proximity assay. J. Immunol. Methods374(1–2), 5–12 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.