1,102
Views
130
CrossRef citations to date
0
Altmetric
Review

Cationic liposomes as vaccine adjuvants

, , &
Pages 513-521 | Published online: 09 Jan 2014

References

  • Christensen D, Korsholm KS, Rosenkrands I et al. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines6(5), 785–796 (2007).
  • Henriksen-Lacey M, Christensen D, Bramwell VW et al. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J. Control. Release145(2), 102–108 (2010).
  • Henriksen-Lacey M, Christensen D, Bramwell VW et al. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N’,N’-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm.8(1), 153–161 (2010).
  • Joseph A, Itskovitz-Cooper N, Samira S et al. A new intranasal influenza vaccine based on a novel polycationic lipid–ceramide carbamoyl-spermine (CCS) I. Immunogenicity and efficacy studies in mice. Vaccine24(18), 3990–4006 (2006).
  • Hilgers LA, Snippe H. DDA as an immunological adjuvant. Res. Immunol.143(5), 494–503; discussion 74–76 (1992).
  • Brunel F, Darbouret A, Ronco J. Cationic lipid DC-Chol induces an improved and balanced immunity able to overcome the unresponsiveness to the hepatitis B vaccine. Vaccine17(17), 2192–2203 (1999).
  • Sanchez V, Gimenez S, Haensler J et al. Formulations of single or multiple H. pylori antigens with DC Chol adjuvant induce protection by the systemic route in mice. Optimal prophylactic combinations are different from therapeutic ones. FEMS Immunol. Med. Microbiol.30(2), 157–165 (2001).
  • Vangasseri DP, Cui Z, Chen W et al. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol.23(5), 385–395 (2006).
  • Kuramoto T, Nishikawa M, Thanaketpaisarn O et al. Use of lipoplex-induced nuclear factor-κB activation to enhance transgene expression by lipoplex in mouse lung. J. Gene. Med.8(1), 53–62 (2006).
  • Zaks K, Jordan M, Guth A et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol.176(12), 7335–7345 (2006).
  • Mitchell LA, Joseph A, Kedar E, Barenholz Y, Galun E. Mucosal immunization against hepatitis A: antibody responses are enhanced by co-administration of synthetic oligodeoxynucleotides and a novel cationic lipid. Vaccine24(25), 5300–5310 (2006).
  • Tanaka T, Legat A, Adam E et al. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur. J. Immunol.38(5), 1351–1357 (2008).
  • Montier T, Benvegnu T, Jaffres PA, Yaouanc JJ, Lehn P. Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr. Gene Ther.8(5), 296–312 (2008).
  • Simberg D, Weisman S, Talmon Y, Barenholz Y. DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit. Rev. Ther. Drug Carrier Syst.21(4), 257–317 (2004).
  • McLachlan G, Ho LP, Davidson-Smith H et al. Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther.3(12), 1113–1123 (1996).
  • Porteous DJ, Dorin JR, McLachlan G et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther.4(3), 210–218 (1997).
  • McLachlan G, Stevenson BJ, Davidson DJ, Porteous DJ. Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs. Gene Ther.7(5), 384–392 (2000).
  • Perrie Y, Frederik PM, Gregoriadis G. Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine19(23–24), 3301–3310 (2001).
  • Perrie Y, McNeil S, Vangala A. Liposome-mediated DNA immunisation via the subcutaneous route. J. Drug Target.11(8–10), 555–563 (2003).
  • Bei R, Guptill V, Masuelli L et al. The use of a cationic liposome formulation (DOTAP) mixed with a recombinant tumor-associated antigen to induce immune responses and protective immunity in mice. J. Immunother.21(3), 159–169 (1998).
  • Shrivastava S, Lole KS, Tripathy AS, Shaligram US, Arankalle VA. Development of candidate combination vaccine for hepatitis E and hepatitis B: a liposome encapsulation approach. Vaccine27(47), 6582–6588 (2009).
  • Brgles M, Habjanec L, Halassy B, Tomasic J. Liposome fusogenicity and entrapment efficiency of antigen determine the Th1/Th2 bias of antigen-specific immune response. Vaccine27(40), 5435–5442 (2009).
  • Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int. J. Pharm.368(1–2), 56–62 (2009).
  • Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine29(5), 1045–1052 (2011).
  • Cui Z, Han SJ, Vangasseri DP, Huang L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol. Pharm.2(1), 22–28 (2005).
  • Yan W, Chen W, Huang L. Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol. Immunol.44(15), 3672–3681 (2007).
  • Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol. Immunother.57(4), 517–530 (2008).
  • Yan W, Chen W, Huang L. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release130(1), 22–28 (2008).
  • Cheng JY, Huang HN, Tseng WC et al. Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. J. Control. Release135(3), 242–249 (2009).
  • Khazanov E, Simberg D, Barenholz Y. Lipoplexes prepared from cationic liposomes and mammalian DNA induce CpG-independent, direct cytotoxic effects in cell cultures and in mice. J. Gene Med.8(8), 998–1007 (2006).
  • Whitmore MM, Li S, Falo L Jr, Huang L. Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol. Immunother.50(10), 503–514 (2001).
  • Zhou S, Kawakami S, Yamashita F, Hashida M. Intranasal administration of CpG DNA lipoplex prevents pulmonary metastasis in mice. Cancer Lett.287(1), 75–81 (2010).
  • Igarashi S, Hattori Y, Maitani Y. Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome. J. Control. Release112(3), 362–368 (2006).
  • Maitani Y, Igarashi S, Sato M, Hattori Y. Cationic liposome (DC-Chol/DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression. Int. J. Pharm.342(1–2), 33–39 (2007).
  • Zhang Y, Li H, Sun J et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int. J. Pharm.390(2), 198–207 (2010).
  • Guy B, Pascal N, Francon A et al. Design, characterization and preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine19(13–14), 1794–1805 (2001).
  • Vangala A, Bramwell VW, McNeil S et al. Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J. Control. Release119(1), 102–110 (2007).
  • Pialoux G, Hocini H, Pérusat S et al. Phase I study of a candidate vaccine based on recombinant HIV-1 gp160 (MN/LAI) administered by the mucosal route to HIV-seronegative volunteers: the ANRS VAC14 study. Vaccine26(21), 2657–2666 (2008).
  • Cremel M, Hamzeh-Cognasse H, Genin C, Delezay O. Female genital tract immunization: evaluation of candidate immunoadjuvants on epithelial cell secretion of CCL20 and dendritic/Langerhans cell maturation. Vaccine24(29–30), 5744–5754 (2006).
  • Dalsgaard K. Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Arch. Gesamte Virusforsch.44(3), 243–254 (1974).
  • Myschik J, Eberhardt F, Rades T, Hook S. Immunostimulatory biodegradable implants containing the adjuvant Quil-A – part I: physicochemical characterisation. J. Drug Target.16(3), 213–223 (2008).
  • Myschik J, McBurney WT, Rades T, Hook S. Immunostimulatory lipid implants containing Quil-A and DC-cholesterol. Int. J. Pharm.363(1–2), 91–98 (2008).
  • McBurney WT, Lendemans DG, Myschik J et al.In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine26(35), 4549–4556 (2008).
  • Solodin I, Brown CS, Bruno MS et al. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry34(41), 13537–13544 (1995).
  • McLean JW, Fox EA, Baluk P et al. Organ-specific endothelial cell uptake of cationic liposome–DNA complexes in mice. Am. J. Physiol.273(1 Pt 2), H387–H404 (1997).
  • Dow SW, Fradkin LG, Liggitt DH et al. Lipid–DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J. Immunol.163(3), 1552–1561 (1999).
  • Freimark BD, Blezinger HP, Florack VJ et al. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J. Immunol.160(9), 4580–4586 (1998).
  • Hofland H, Huang L. Inhibition of human ovarian carcinoma cell proliferation by liposome–plasmid DNA complex. Biochem. Biophys. Res. Commun.207(2), 492–496 (1995).
  • Whitmore M, Li S, Huang L. LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther.6(11), 1867–1875 (1999).
  • Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature408(6813), 740–745 (2000).
  • Gowen BB, Fairman J, Dow S et al. Prophylaxis with cationic liposome-DNA complexes protects hamsters from phleboviral disease: importance of liposomal delivery and CpG motifs. Antiviral Res.81(1), 37–46 (2009).
  • Gowen BB, Fairman J, Smee DF et al. Protective immunity against acute phleboviral infection elicited through immunostimulatory cationic liposome–DNA complexes. Antiviral Res.69(3), 165–172 (2006).
  • Ireland R, Olivares-Zavaleta N, Warawa JM et al. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Path.6(5), e1000921 (2010).
  • Morrey JD, Motter NE, Taro B, Lay M, Fairman J. Efficacy of cationic lipid–DNA complexes (CLDC) on hepatitis B virus in transgenic mice. Antiviral Res.79(1), 71–79 (2008).
  • Bernstein DI, Cardin RD, Bravo FJ et al. Potent adjuvant activity of cationic liposome–DNA complexes for genital herpes vaccines. Clin. Vac. Immunol.16(5), 699–705 (2009).
  • Chang S, Warner J, Liang L, Fairman J. A novel vaccine adjuvant for recombinant flu antigens. Biologicals37(3), 141–147 (2009).
  • Cote PJ, Butler SD, George AL et al. Rapid immunity to vaccination with woodchuck hepatitis virus surface antigen using cationic liposome–DNA complexes as adjuvant. J. Med. Virol.81(10), 1760–1772 (2009).
  • Lay M, Callejo B, Chang S et al. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine27(29), 3811–3820 (2009).
  • Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev.8(4), 247–258 (2008).
  • Fairman J, Moore J, Lemieux M et al. Enhanced in vivo immunogenicity of SIV vaccine candidates with cationic liposome–DNA complexes in a rhesus macaque pilot study. Hum. Vaccin.5(3), 141–150 (2009).
  • Jones A, Bosio C, Duffy A et al. Protection against pneumonic plague following oral immunization with a non-replicating vaccine. Vaccine28(36), 5924–5929 (2010).
  • Bernstein DI, Farley N, Bravo FJ et al. The adjuvant CLDC increases protection of a herpes simplex type 2 glycoprotein D vaccine in guinea pigs. Vaccine28(21), 3748–3753 (2010).
  • Troyer RM, Propst KL, Fairman J, Bosio CM, Dow SW. Mucosal immunotherapy for protection from pneumonic infection with Francisella tularensis. Vaccine27(33), 4424–4433 (2009).
  • Goodyear A, Kellihan L, Bielefeldt-Ohmann H et al. Protection from pneumonic infection with Burkholderia species by inhalational immunotherapy. Infect. Immun.77(4), 1579–1588 (2009).
  • Benatti CR, Ruysschaert JM, Lamy MT. Structural characterization of DiC14-amidine, a pH-sensitive cationic lipid used for transfection. Chem. Phys. Lipids.131(2), 197–204 (2004).
  • Ruysschaert JM, el Ouahabi A, Willeaume V et al. A novel cationic amphiphile for transfection of mammalian cells. Biochem. Biophys. Res. Commun.203(3), 1622–1628 (1994).
  • Jacquet A, Vanderschrick JF, Vandenbranden M et al. Vaccination with the recombinant allergen ProDer p 1 complexed with the cationic lipid DiC14-amidine prevents allergic responses to house dust mite. Mol. Ther.11(6), 960–968 (2005).
  • Lonez C, Legat A, Vandenbranden M, Ruysschaert JM. DiC14-amidine confers new anti-inflammatory properties to phospholipids. Cell. Mol. Life Sci.65(4), 620–630 (2008).
  • Lonez C, Vandenbranden M, Ouali M et al. Free diC14-amidine liposomes inhibit the TNF-α secretion induced by CpG sequences and lipopolysaccharides: role of lipoproteins. Mol. Membr. Biol.23(3), 227–234 (2006).
  • Gall D. The adjuvant activity of aliphatic nitrogenous bases. Immunology11(4), 369–386 (1966).
  • Stanfield JP, Gall D, Bracken PM. Single-dose antenatal tetanus immunisation. Lancet301(7797), 215–219 (1973).
  • Veronesi R, Correa A, Alterio D. Single dose immunization against tetanus. Promising results in human trials. Rev. Inst. Med. Trop.12(1), 46–54 (1970).
  • Hilgers LA, Snippe H, Jansze M, Willers JM. Combinations of two synthetic adjuvants: synergistic effects of a surfactant and a polyanion on the humoral immune response. Cell. Immunol.92(2), 203–209 (1985).
  • Henriksen-Lacey M, Bramwell VW, Christensen D et al. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release142(2), 180–186 (2010).
  • Korsholm KS, Agger EM, Foged C et al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology121(2), 216–226 (2007).
  • Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun.68(2), 791–795 (2000).
  • Casella C, Mitchell T. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci.65(20), 3231–3240 (2008).
  • Sable SB, Verma I, Khuller GK. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine23(32), 4175–4184 (2005).
  • Agger EM, Cassidy JP, Brady J et al. Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection. Immunology124(2), 175–185 (2008).
  • Langermans JA, Doherty TM, Vervenne RA et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine23(21), 2740–2750 (2005).
  • Korsholm KS, Petersen RV, Agger EM, Andersen P. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology129(1), 75–86 (2010).
  • Bekierkunst A, Yarkoni E, Flechner I et al. Immune response to sheep red blood cells in mice pretreated with mycobacterial fractions. Infect. Immun.4(3), 256–263 (1971).
  • Lima VM, Bonato VL, Lima KM et al. Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect. Immun.69(9), 5305–5312 (2001).
  • Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol. Immunol.45(12), 801–811 (2001).
  • Silva CL, Ekizlerian SM, Fazioli RA. Role of cord factor in the modulation of infection caused by mycobacteria. Am. J. Pathol.118(2), 238–247 (1985).
  • Hunter RL, Olsen M, Jagannath C, Actor JK. Trehalose 6,6’-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am. J. Pathol.168(4), 1249–1261 (2006).
  • Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann. Clin. Lab. Sci.36(4), 371–386 (2006).
  • Hunter RL, Venkataprasad N, Olsen MR. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis86(5), 349–356 (2006).
  • Werninghaus K, Babiak A, Gross O et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ-Syk-Card9-dependent innate immune activation. J. Exp. Med.206(1), 89–97 (2009).
  • Ishikawa E, Ishikawa T, Morita YS et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J. Exp. Med.206(13), 2879–2888 (2009).
  • Matsunaga I, Moody DB. Mincle is a long sought receptor for mycobacterial cord factor. J. Exp. Med.206(13), 2865–2868 (2009).
  • Schoenen H, Bodendorfer B, Hitchens K et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol.184(6), 2756–2760 (2010).
  • Davidsen J, Rosenkrands I, Christensen D et al. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate) – a novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta1718(1–2), 22–31 (2005).
  • Holten-Andersen L, Doherty TM, Korsholm KS, Andersen P. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect. Immun.72(3), 1608–1617 (2004).
  • Christensen D, Kirby D, Foged C et al.α,α’-trehalose 6,6’-dibehenate in non-phospholipid-based liposomes enables direct interaction with trehalose, offering stability during freeze-drying. Biochim. Biophys. Acta1778(5), 1365–1373 (2008).
  • Agger EM, Rosenkrands I, Hansen J et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE3(9), e3116 (2008).
  • Christensen D, Lindenstrom T, van de Wijdeven G, Andersen P, Agger EM. Syringe free vaccination with CAF01 adjuvated Ag85B-ESAT-6 in Bioneedles™ provides strong and prolonged protection against tuberculosis. PLoS ONEe15043 (2010).
  • Lindenstrom T, Agger EM, Korsholm KS et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol.182(12), 8047–8055 (2009).
  • Hansen J, Jensen KT, Follmann F et al. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J. Infect. Dis.198(5), 758–767 (2008).
  • Olsen AW, Theisen M, Christensen D, Follmann F, Andersen P. Protection against Chlamydia promoted by a subunit vaccine (CTH1) compared with a primary intranasal infection in a mouse genital challenge model. PLoS ONE5(5), e10768 (2010).
  • Yu H, Jiang X, Shen C et al.Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of γ interferon (IFN-γ)/tumor necrosis factor α and IFN-γ/interleukin-17 double-positive CD4+ T cells. Infect. Immun.78(5), 2272–2282 (2010).
  • Kamath AT, Rochat AF, Christensen D et al. A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PLoS ONE4(6), e5771 (2009).
  • Kamath AT, Henri S, Battye F, Tough DF, Shortman K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood100(5), 1734–1741 (2002).
  • Nordly P, Agger EM, Andersen P, Nielsen HM, Foged C. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res.28(3), 553–562 (2011).
  • Andersen CS, Agger EM, Rosenkrands I et al. A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J. Immunol.182(1), 424–432 (2009).
  • Andersen CA, Rosenkrands I, Olsen AW et al. Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from Mycobacterium bovis bacillus Calmette–Guerin. J. Immunol.183(4), 2294–2302 (2009).
  • Bhowruth V, Minnikin DE, Agger EM et al. Adjuvant properties of a simplified C32 monomycolyl glycerol analogue. Bioorg. Med. Chem. Lett.19(7), 2029–2032 (2009).
  • Nordly P, Korsholm KS, Pedersen EA et al. Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur. J. Pharm. Biopharm.77(1), 89–98 (2011).
  • Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect. Immun.76(3), 1003–1015 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.