155
Views
11
CrossRef citations to date
0
Altmetric
Review

Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease

, &
Pages 87-95 | Published online: 09 Jan 2014

References

  • Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet. Microbiol.140, 392–398 (2010).
  • Godfroid J, Cloeckaert A, Liautard JP et al. From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet. Res.36, 313–326 (2005).
  • Ridler AL, West DM. Control of Brucella ovis Infection in Sheep. Vet. Clin. N. Am. Food Animal Pract.27, 61–66 (2011).
  • Zinsstag J, Schelling E, Roth F, Bonfoh B, de Savigny D, Tanner M. Human benefits of animal interventions for zoonosis control. Emerg. Infect. Dis.13, 527–531 (2007).
  • WHO /MZCP. Human and Animal Brucellosis. MZCP Report on the Third Workshop on Human and Animal Brucellosis Epidemiological Surveillance in the MZCP Countries. WHO, Geneva, Switzerland (1998).
  • WHO EMC/ZDI/98.14. WHO, Geneva, Switzerland (1997).
  • Blasco JM, Diaz R. Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet342, 805 (1993).
  • Kamboj M, Sepkowitz KA. Risk of transmission associated with live attenuated vaccines given to healthy persons caring for or residing with an immunocompromised patient. Infect. Control Hosp. Epidemiol.28, 702–707 (2007).
  • Blasco JM. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev. Vet. Med.31, 275–283 (1997).
  • Ariza J, Bosilkovski M, Cascio A et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med.4, 317 (2007).
  • Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Vet. Microbiol.90, 479–496 (2002).
  • Marin CM, Barberan M, Jimenez de Bagues MP, Blasco JM. Comparison of subcutaneous and conjunctival routes of Rev1 vaccination for the prophylaxis of Brucella ovis infection in rams, Res. Vet. Sci.48, 209–215 (1990).
  • Muñoz MP, de Miguel MJ, Grilló MJ, Marín CM, Barberán M, Blasco JM. Immunopathological responses and kinetics of Brucella melitensis Rev 1 infection after subcutaneous or conjunctival vaccination in rams. Vaccine26, 2562–2569 (2008).
  • Moriyón I, Grilló MJ, Monreal D et al. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet. Res.35, 1–38 (2004).
  • Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet. Microbiol.28(2), 171–188 (1991).
  • el Idrissi AH, Benkirane A, el Maadoudi M, Bouslikhane M, Berrada J, Zerouali A. Comparison of the efficacy of Brucella abortus strain RB51 and Brucella melitensis Rev. 1 live vaccines against experimental infection with Brucella melitensis in pregnant ewes. Rev. Sci. Tech.20, 741–747 (2001).
  • Jimenez de Bagues MP, Barberan M, Marin CM, Blasco JM. The Brucella abortus RB51 vaccine does not confer protection against Brucella ovis in rams. Vaccine13, 301–304 (1995).
  • Villarroel M, Grell M, Saenz R. Isolation and identification of Brucella abortus RB 51 in human: first report in Chile. Arch. Med. Vet.32, 89–91 (2000).
  • Cloeckaert A, Zygmunt MS, Nicolle J, Dubray G, Limet JN. O-chain expression in the rough Brucella melitensis strain B115: induction of O-polysaccharide-specific monoclonal antibodies and intracellular localization demonstrated by immunoelectron microscopy. J. Gen. Microb.138, 1211–1219 (1992).
  • Adone R, Francia M, Ciuchini F. Evaluation of Brucella melitensis B115 as rough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine26, 4913–4917 (2008).
  • Adone R, Francia M, Pistoia C, Pesciaroli M, Pasquali P. Brucella melitensis rough strain B115 is protective against heterologous Brucella spp. infections. Vaccine29, 2523–2529 (2011).
  • Jacques I, Verger JM, Laroucau K et al. Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and OMP31 B. melitensis Rev.1 deletion mutants in sheep. Vaccine25, 794–805 (2007).
  • Grillo MJ, Marin CM, Barberan M et al. Efficacy of bp26 and bp26/OMP31 B. melitensis Rev.1 deletion mutants against Brucella ovis in rams. Vaccine27, 187–191 (2009).
  • Arenas-Gamboa AM, Rice-Ficht AC, Kahl-McDonagh MM, Ficht TA. Protective efficacy and safety of Brucella melitensis 16MAmucR against Intraperitoneal and aerosol challenge in BALB/c mice. Infect. Immun.79, 3653–3658 (2011).
  • Magnani DM, Harms JS, Durward MA, Splitter GA. Nondividing but Metabolically active γ-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice. Infect. Immun.77, 5181–5518 (2009).
  • He Y, Xiang Z. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN. Immunome Res.6(1), S5 (2010).
  • Cassataro J, Pasquevich KA, Estein SM et al. A recombinant subunit vaccine based on the insertion of 27 amino acids from OMP31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination. Vaccine25, 4437–4446 (2007).
  • Vizcaíno N, Kittelberger R, Cloeckaert A, Marín CM, Fernández-Lago L. Minor nucleotide substitutions in the omp31 gene of Brucella ovis result in antigenic differences in the major outer membrane protein that it encodes compared to those of the other Brucella species. Infect. Immun.69, 7020–7028 (2001).
  • Da Costa Martins R, Irache JM, Blasco JM et al. Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine28, 3038–3046 (2010).
  • Salas-Tellez E, Nunez del Arco A, Tenorio V, Diaz-Aparicio E, de la Garza M, Suarez-Guemes F. Subcellular fractions of Brucella ovis distinctively induce the production of interleukin-2, interleukin-4, and interferon-γ in mice. Can. J. Vet. Res.69, 53–57 (2005).
  • Blasco JM, Gamazo C, Winter AJ et al. Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Vet. Immunol. Immunopathol.37, 257–270 (1993).
  • Munoz PM, Estevan M, Marin CM et al. Brucella outer membrane complex-loaded microparticles as a vaccine against Brucella ovis in rams. Vaccine24, 1897–1905 (2006).
  • Tabatabai LB, Pugh GW Jr. Modulation of immune responses in BALB/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine12, 919–924 (1994).
  • Cassataro J, Velikovsky CA, de la Barrera S et al. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infect. Immun.73, 6537–6546 (2005).
  • Onate AA, Cespedes S, Cabrera A et al. A DNA vaccine encoding Cu,Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice. Infect. Immun.71, 4857–4861 (2003).
  • Beauclair KD, Khansari DN. Protection of mice against Brucella abortus by immunization with polyclonal anti-idiotype antibodies. Immunobiology180, 208–220 (1990).
  • Gamazo C, Winter AJ, Moriyon I, Riezu-Boj JI, Blasco JM, Diaz R. Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect. Immun.57, 1419–1426 (1989).
  • Estein SM, Cassataro J, Vizcaino N, Zygmunt MS, Cloeckaert A, Bowden RA. The recombinant OMP31 from Brucella melitensis alone or associated with rough lipopolysaccharide induces protection against Brucella ovis infection in BALB/c mice. Microbes. Infect.5, 85–93 (2003).
  • Edmonds MD, Cloeckaert A, Elzer PH. Brucella species lacking the major outer membrane protein OMP25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet. Microbiol.88, 205–221 (2002).
  • Berguer PM, Mundiñano J, Piazzon I et al. A polymeric bacterial protein activates dendritic cells via TLR4. J. Immunol.176, 2366–2372 (2006).
  • Costa Oliveira S, Souza de Oliveira F, Costa Macedo G et al. The role of innate immune receptors in the control of Brucella abortus infection: Toll-like receptors and beyond. Microbes. Infect.10, 1005–1009 (2008).
  • Velikovsky CA, Goldbaum FA, Cassataro J et al. Brucella lumazine synthase elicits a mixed Th1–Th2 immune response and reduces infection in mice challenged with Brucella abortus 544 independently of the adjuvant formulation used. Infect. Immun.71(10), 5750–5755 (2003).
  • Velikovsky CA, Cassataro J, Giambartolomei GH et al. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect. Immun.70(5), 2507–2511 (2002).
  • Cassataro J, Pasquevich KA, Estein SM et al. DNA vaccine coding for the chimera BLSOmp31 induced a better degree of protection against B. ovis and a similar degree of protection against B. melitensis than Rev.1 vaccination. Vaccine25(22), 4437–4446 (2007).
  • Estein SM, Fiorentino MA, Paolicchi FA, Clausse M, Manazza J. The polymeric antigen BLSOmp31 confers protection against Brucella ovis infection in rams. Vaccine27, 6704–6711 (2009).
  • Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Int. J. Pharm.364, 265–271 (2008).
  • Gorvel JP. Brucella: a Mr “Hide” converted into Dr Jekyll. Microbes. Infect.10, 1010–1013 (2008).
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol.12, 509–517 (2011).
  • Ardavin C. Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. Immunol.3, 582–590 (2003).
  • Degen WG, Jansen T, Schijns VE. Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev. Vaccines2(2), 327–335 (2003).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008).
  • Lawson LB, Norton EB, Clements JD. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol.23(3), 414–420 (2011).
  • Lavelle EC. Generation of improved mucosal vaccines by induction of innate immunity. Cell Mol. Life Sci.62, 2750–2770 (2005).
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol.82, 488–496 (2004).
  • Pasquevich KA, Estein SM, Garcia Samartino C et al. Immunization with recombinant Brucella species outer membrane protein OMP16 or OMP19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect. Immun.77, 436–445 (2009).
  • Pasquevich KA, Ibañez AE, Coria LM et al. An oral vaccine based on U-OMP19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS ONE6(1), e16203 (2011).
  • Tamayo I, Irache JM, Mansilla C, Ochoa-Reparaz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin. Vacc. Immunol.17, 1356–1362 (2010).
  • van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine21, 1400–1408 (2003).
  • Adair BM. Nanoparticle vaccines against respiratory viruses. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol.1, 405–414 (2009).
  • Chiarella P, Massi E, De Robertis M, Signori E, Fazio VM. Adjuvants in vaccines and for immunisation: current trends. Expert. Opin. Biol. Ther.7, 1551–1562 (2007).
  • Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine3, 343–355 (2008).
  • Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev.62, 394–407 (2010).
  • Audran R, Peter K, Dannull J et al. Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine21, 1250–1255 (2003).
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release76, 59–71 (2001).
  • Murillo M, Grillo MJ, Rene J et al. A Brucella ovis antigenic complex bearing poly-epsilon-caprolactone microparticles confer protection against experimental brucellosis in mice. Vaccine19, 4099–4106 (2001).
  • Arenas-Gamboa AM, Ficht TA, Davis DS et al. Oral vaccination with microencapsuled strain 19 vaccine confers enhanced protection against Brucella abortus strain 2308 challenge in red deer (Cervus elaphus elaphus). J. Wildlife Dis.45, 1021–1029 (2009).
  • Cassataro J, Pasquevich KA, Estein SM et al. A DNA vaccine coding for the chimera BLSOMP31 induced a better degree of protection against B. ovis and a similar degree of protection against B. melitensis than Rev.1 vaccination. Vaccine25, 5958–5967 (2007).
  • Rosas G, Fragoso G, Ainciart N et al. Brucella spp. lumazine synthase: a novel adjuvant and antigen delivery system to effectively induce oral immunity. Microbes. Infect.8, 1277–1286 (2006).
  • Ficht TA, Kahl-McDonagh M, Arenas-Gamboa M, Rice-Ficht AC. Brucellosis: the case for live, attenuated vaccines. Vaccine27, D40–D43 (2009).
  • Nepom GT. Mucosal matters. Foreword. Nat. Rev. Immunol.8, 409 (2008).
  • Arbos P, Campanero MA, Arangoa MA, Irache JM. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. J. Control. Release96, 55–65 (2004).
  • Irache JM, Huici M, Konecny M, Espuelas S, Campanero MA, Arbos P. Bioadhesive properties of Gantrez nanoparticles. Molecules10, 126–145 (2005).
  • Gomez S, Gamazo C, San Roman B et al. A novel nanoparticulate adjuvant for immunotherapy with Lolium perenne. J. Immunol. Methods348, 1–8 (2009).
  • Gomez S, Gamazo C, San Roman B et al. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis . Eur. J. Pharm. Biopharm.70, 711–717 (2008).
  • Chen H. Recent advances in mucosal vaccine development. J. Control. Release67, 117–128 (2008).
  • Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine20, 208–217 (2001).
  • Salman HH, Gamazo C, de Smidt PC, Russell-Jones G, Irache JM. Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B(12)-Gantrez nanoparticles. Pharm. Res.25, 2859–2868 (2008).
  • Salman HH, Irache JM, Gamazo C. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine27, 4784–4790 (2009).
  • Salman HH, Gamazo C, Campanero MA, Irache JM. Bioadhesive mannosylated nanoparticles for oral drug delivery. J. Nanosci. Nanotechnol.6, 3203–3209 (2006).
  • Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert. Opin. Biol. Ther.4, 1953–1962 (2004).
  • Apostolopoulos V, McKenzie IF. Role of the mannose receptor in the immune response. Curr. Mol. Med.1(4), 469–474 (2001).
  • Jain SK, Gupta Y, Jain A, Saxena AR, Khare P. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine4, 41–48 (2008).
  • Salman HH, Gamazo C, Agueros M, Irache JM. Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles. Vaccine25, 8123–8132 (2007).
  • Schlosser E, Mueller M, Fischer S et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine26, 1626–1637 (2008).
  • Camacho AI, Da Costa Martins R, Tamayo I et al. Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine29(41), 7130–7135 (2011).
  • Lumsden JM, Pichyangkul S, Srichairatanakul U et al. Evaluation of the safety and immunogenicity in Rhesus monkeys of a recombinant malaria vaccine for Plasmodium vivax with a synthetic Toll-Like receptor 4 agonist formulated in an emulsion. Infect. Immun.79, 3492–3500 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.