354
Views
50
CrossRef citations to date
0
Altmetric
Vaccine Profile

Targeting EGF receptor variant III: tumor-specific peptide vaccination for malignant gliomas

, &
Pages 133-144 | Published online: 09 Jan 2014

References

  • Porter KR, McCarthy BJ, Freels S, Kim Y, Davis FG. Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro. Oncol.12(6), 520–527 (2010).
  • Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin. Oncol.31(5), 635–644 (2004).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25(30), 4722–4729 (2007).
  • Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.21(21), 2683–2710 (2007).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol.23(10), 2411–2422 (2005).
  • Hatten ME. Central nervous system neuronal migration. Annu. Rev. Neurosci.22, 511–539 (1999).
  • Imperato JP, Paleologos NA, Vick NA. Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol.28(6), 818–822 (1990).
  • Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol.19(3), 183–232 (1995).
  • Kavanaugh WM, Turck CW, Williams LT. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science268(5214), 1177–1179 (1995).
  • Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80(2), 179–185 (1995).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA89(7), 2965–2969 (1992).
  • Gorgoulis V, Aninos D, Mikou P et al. Expression of EGF, TGF-alpha and EGFR in squamous cell lung carcinomas. Anticancer Res.12(4), 1183–1187 (1992).
  • Irish JC, Bernstein A. Oncogenes in head and neck cancer. Laryngoscope103(1 Pt 1), 42–52 (1993).
  • Korc M, Meltzer P, Trent J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc. Natl Acad. Sci. USA83(14), 5141–5144 (1986).
  • Moorghen M, Ince P, Finney KJ, Watson AJ, Harris AL. Epidermal growth factor receptors in colorectal carcinoma. Anticancer Res.10(3), 605–611 (1990).
  • Ishikawa J, Maeda S, Umezu K, Sugiyama T, Kamidono S. Amplification and overexpression of the epidermal growth factor receptor gene in human renal-cell carcinoma. Int. J. Cancer45(6), 1018–1021 (1990).
  • Zajchowski D, Band V, Pauzie N, Tager A, Stampfer M, Sager R. Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells. Cancer Res.48(24 Pt 1), 7041–7047 (1988).
  • Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD. Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int. J. Cancer53(2), 209–214 (1993).
  • Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol. Biol. Cell4(1), 121–133 (1993).
  • Shibata T, Kawano T, Nagayasu H et al. Enhancing effects of epidermal growth factor on human squamous cell carcinoma motility and matrix degradation but not growth. Tumour Biol.17(3), 168–175 (1996).
  • McLendon R, Friedman A, Bigner D et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17(1), 98–110 (2010).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res.48(8), 2231–2238 (1988).
  • Yamazaki H, Fukui Y, Ueyama Y et al. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol. Cell Biol.8(4), 1816–1820 (1988).
  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol.6(3), 217–223; discussion 223–214 (1996).
  • Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl Acad. Sci. USA87(21), 8602–8606 (1990).
  • Moscatello DK, Holgado-Madruga M, Godwin AK et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res.55(23), 5536–5539 (1995).
  • Garcia de Palazzo IE, Adams GP, Sundareshan P et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res.53(14), 3217–3220 (1993).
  • Olapade-Olaopa EO, Moscatello DK, MacKay EH et al. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br. J. Cancer82(1), 186–194 (2000).
  • Wikstrand CJ, Hale LP, Batra SK et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res.55(14), 3140–3148 (1995).
  • Tang CK, Gong XQ, Moscatello DK, Wong AJ, Lippman ME. Epidermal growth factor receptor vIII enhances tumorigenicity in human breast cancer. Cancer Res.60(11), 3081–3087 (2000).
  • Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene13(1), 85–96 (1996).
  • Huang HS, Nagane M, Klingbeil CK et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J. Biol. Chem.272(5), 2927–2935 (1997).
  • Prigent SA, Nagane M, Lin H et al. Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras–Shc–Grb2 pathway. J. Biol. Chem.271(41), 25639–25645 (1996).
  • Nishikawa R, Ji XD, Harmon RC et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl Acad. Sci. USA91(16), 7727–7731 (1994).
  • Feldkamp MM, Lala P, Lau N, Roncari L, Guha A. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery45(6), 1442–1453 (1999).
  • Chu CT, Everiss KD, Wikstrand CJ, Batra SK, Kung HJ, Bigner DD. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem. J.324(Pt 3), 855–861 (1997).
  • Montgomery RB, Moscatello DK, Wong AJ, Cooper JA, Stahl WL. Differential modulation of mitogen-activated protein (MAP) kinase/extracellular signal-related kinase kinase and MAP kinase activities by a mutant epidermal growth factor receptor. J. Biol. Chem.270(51), 30562–30566 (1995).
  • Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem.273(1), 200–206 (1998).
  • Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res.57(18), 4130–4140 (1997).
  • Cadena DL, Chan CL, Gill GN. The intracellular tyrosine kinase domain of the epidermal growth factor receptor undergoes a conformational change upon autophosphorylation. J. Biol. Chem.269(1), 260–265 (1994).
  • Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis28(7), 1408–1417 (2007).
  • Han W, Zhang T, Yu H, Foulke JG, Tang CK. Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol. Ther.5(10), 1361–1368 (2006).
  • Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ. A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res.56(21), 5079–5086 (1996).
  • Halatsch ME, Schmidt U, Botefur IC, Holland JF, Ohnuma T. Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion-mutant epidermal growth factor receptor messenger RNA. J. Neurosurg.92(2), 297–305 (2000).
  • Yamazaki H, Kijima H, Ohnishi Y et al. Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J. Natl Cancer Inst.90(8), 581–587 (1998).
  • Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc. Natl Acad. Sci. USA95(10), 5724–5729 (1998).
  • Lal A, Glazer CA, Martinson HM et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res.62(12), 3335–3339 (2002).
  • Diedrich U, Lucius J, Baron E, Behnke J, Pabst B, Zoll B. Distribution of epidermal growth factor receptor gene amplification in brain tumours and correlation to prognosis. J. Neurol.242(10), 683–688 (1995).
  • Schlegel J, Merdes A, Stumm G et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int. J. Cancer56(1), 72–77 (1994).
  • Shinojima N, Tada K, Shiraishi S et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res.63(20), 6962–6970 (2003).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res.11(4), 1462–1466 (2005).
  • Emens LA, Jaffee EM. Cancer vaccines: an old idea comes of age. Cancer Biol. Ther.2(4 Suppl. 1), S161–168 (2003).
  • Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature411(6835), 380–384 (2001).
  • Jonker DJ, O’Callaghan CJ, Karapetis CS et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med.357(20), 2040–2048 (2007).
  • Lenz HJ, Van Cutsem E, Khambata-Ford S et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J. Clin. Oncol.24(30), 4914–4921 (2006).
  • Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol.22(7), 1201–1208 (2004).
  • Wierzbicki R, Jonker DJ, Moore MJ et al. A Phase II, multicenter study of cetuximab monotherapy in patients with refractory, metastatic colorectal carcinoma with absent epidermal growth factor receptor immunostaining. Invest. New Drugs29(1), 167–174 (2009).
  • Hecht JR, Patnaik A, Berlin J et al. Panitumumab monotherapy in patients with previously treated metastatic colorectal cancer. Cancer110(5), 980–988 (2007).
  • Chung KY, Shia J, Kemeny NE et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol.23(9), 1803–1810 (2005).
  • Hidalgo M, Siu LL, Nemunaitis J et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol.19(13), 3267–3279 (2001).
  • Wakeling AE, Guy SP, Woodburn JR et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res.62(20), 5749–5754 (2002).
  • Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene28(Suppl. 1), S24–S31 (2009).
  • Giampaglia M, Chiuri VE, Tinelli A, De Laurentiis M, Silvestris N, Lorusso V. Lapatinib in breast cancer: clinical experiences and future perspectives. Cancer Treat. Rev.36(Suppl. 3), S72–S79 (2010).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA87(11), 4207–4211 (1990).
  • Purev E, Cai D, Miller E et al. Immune responses of breast cancer patients to mutated epidermal growth factor receptor (EGF-RvIII, Delta EGF-R, and de2–7 EGF-R). J. Immunol.173(10), 6472–6480 (2004).
  • Heimberger AB, Crotty LE, Archer GE et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res.9(11), 4247–4254 (2003).
  • Schmittling RJ, Archer GE, Mitchell DA et al. Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines. J. Immunol. Methods339(1), 74–81 (2008).
  • Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther.8(10), 2773–2779 (2009).
  • Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res.57(8), 1419–1424 (1997).
  • Choi BD, Archer GE, Mitchell DA et al. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol.19(4), 713–723 (2009).
  • Heimberger AB, Archer GE, Crotty LE et al. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery50(1), 158–164; discussion 164–156 (2002).
  • Li G, Wong AJ. EGF receptor variant III as a target antigen for tumor immunotherapy. Expert Rev. Vaccines7(7), 977–985 (2008).
  • Sampson JH, Heimberger AB, Archer GE et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol.28(31), 4722–4729 (2010).
  • Emens LA, Reilly RT, Jaffee EM. Cancer vaccines in combination with multimodality therapy. Cancer Treat Res.123, 227–245 (2005).
  • Sampson JH, Archer GE, Bigner DD et al. Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM [abstract]. J. Clin. Oncol.26(Suppl.), abstract 2011 (2008).
  • Lai R, Recht LD, Reardon DA et al. Interim data for ACT III: Phase II trial of PF-04948568 (CDX-110) in combination with temozolomide (TMZ) in patients (pts) with glioblastoma (GBM). J. Clin. Oncol.28(Suppl. 15), S2014 (2010).
  • Cebon J, Jager E, Shackleton MJ et al. Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun.3, 7 (2003).
  • Jager E, Gnjatic S, Nagata Y et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA97(22), 12198–12203 (2000).
  • Marchand M, van Baren N, Weynants P et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer80(2), 219–230 (1999).
  • Scheibenbogen C, Schmittel A, Keilholz U et al. Phase 2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother.23(2), 275–281 (2000).
  • Schwartzentruber DJ, Lawson D, Richards J et al. A Phase III multiinstitutional randomized study of immunization with the gp100, 209–217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma. J. Clin. Oncol.27(18s), (2009).
  • Dudley ME, Yang JC, Sherry R et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol.26(32), 5233–5239 (2008).
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8(4), 299–308 (2008).
  • Cao ZA, Daniel D, Hanahan D. Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer. BMC Cancer2, 11 (2002).
  • Ganss R, Ryschich E, Klar E, Arnold B, Hammerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res.62(5), 1462–1470 (2002).
  • Zhang B, Bowerman NA, Salama JK et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med.204(1), 49–55 (2007).
  • Hamanishi J, Mandai M, Iwasaki M et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA104(9), 3360–3365 (2007).
  • Hirano F, Kaneko K, Tamura H et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res.65(3), 1089–1096 (2005).
  • Hodi FS, Butler M, Oble DA et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA105(8), 3005–3010 (2008).
  • Nomi T, Sho M, Akahori T et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res.13(7), 2151–2157 (2007).
  • Strome SE, Dong H, Tamura H et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res.63(19), 6501–6505 (2003).
  • Thompson RH, Gillett MD, Cheville JC et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA101(49), 17174–17179 (2004).
  • Yuan J, Gnjatic S, Li H et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105(51), 20410–20415 (2008).
  • Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood114(8), 1545–1552 (2009).
  • Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J. Immunol.186(3), 1325–1331 (2011).
  • Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med.2(1), 52–58 (1996).
  • Timmerman JM, Czerwinski DK, Davis TA et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood99(5), 1517–1526 (2002).
  • Candolfi M, Curtin JF, Nichols WS et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J. Neurooncol.85(2), 133–148 (2007).
  • Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications in preclinical trials. Clin. Cancer Res.12(18), 5288–5297 (2006).
  • Hann B, Balmain A. Building ‘validated’ mouse models of human cancer. Curr. Opin. Cell Biol.13(6), 778–784 (2001).
  • Walrath JC, Hawes JJ, Van Dyke T, Reilly KM. Genetically engineered mouse models in cancer research. Adv. Cancer Res.106, 113–164 (2010).
  • Shapiro WR, Basler GA, Chernik NL, Posner JB. Human brain tumor transplantation into nude mice. J. Natl Cancer Inst.62(3), 447–453 (1979).
  • Finkelstein SD, Black P, Nowak TP, Hand CM, Christensen S, Finch PW. Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery34(1), 136–143 (1994).
  • Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res.50(24), 8017–8022 (1990).
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer8(10), 755–768 (2008).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature414(6859), 105–111 (2001).
  • Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer3(12), 895–902 (2003).
  • Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene23(43), 7274–7282 (2004).
  • Tysnes BB, Bjerkvig R. Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim. Biophys. Acta1775(2), 283–297 (2007).
  • Tu SM, Lin SH, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol.3(8), 508–513 (2002).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev.12(23), 3675–3685 (1998).
  • Ayuso-Sacido A, Moliterno JA, Kratovac S et al. Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J. Neurooncol.97(3), 323–337 (2010).
  • Mukherjee B, McEllin B, Camacho CV et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res.69(10), 4252–4259 (2009).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Witusik-Perkowska M, Rieske P, Hulas-Bigoszewska K et al. Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies. J. Neurooncol.102(3), 395–407 (2010).
  • Wong AJ, Mitra S, Del Vecchio CA, Skirboll S. Expression of EGFRvIII in brain tumor stem cells [Abstract]. J. Clin. Oncol.26(Suppl.), 2002 (2008).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Beier D, Hau P, Proescholdt M et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.67(9), 4010–4015 (2007).
  • Inda MD, Bonavia R, Mukasa A et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev.24(16), 1731–1745 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.